Análisis dosimétrico de las incertidumbres derivadas del movimiento y las variaciones de densidad evaluadas con Radioterapia Guiada por la Imagen en Radioterapia Esterotáxica de pulmón

Autores/as

  • José Bea Gilabert
  • Jose Domingo Lago Martín
  • Enrique López Muñoz
  • Veronica González Vidal
  • Paola Antonini Bolumburu
  • Miguel Angel Berenguer Frances
  • Luis María Larrea Rabassa

DOI:

https://doi.org/10.37004/sefm/2020.21.2.003

Palabras clave:

SBRT, IGRT, Heterogeneidad, Verificación de dosis

Resumen

Objetivo: Estudiar el impacto del movimiento y de la variación de la densidad en la dosis impartida al tumor analizando los volúmenes determinados sobre imágenes obtenidas durante el tratamiento.

Material y métodos: Se ha calculado la dosis de prescripción sobre el PTV (Planning Target Volume), considerando tanto una densidad uniforme forzada del mismo como sin forzarla, y el valor consecuente en el tumor. Se ha estudiado la diferencia entre los algoritmos Monte Carlo y Collapsed Cone. Se ha calculado la dosis sobre los volúmenes definidos en imágenes de cone beam durante el tratamiento, considerando idéntica densidad que el tumor. Finalmente, se han realizado dosimetrías teóricas sobre cilindros con diferentes desplazamientos desde el isocentro para evaluar su impacto en la dosis recibida comparada con los casos clínicos.

Resultados: La prescripción de dosis al PTV considerando una densidad forzada conduce a una dosis calculada mayor sobre el tumor de 10.6%, y de 8.2% sin forzarla. Los volúmenes delimitados en imágenes de cone beam reciben aproximadamente igual dosis que el determinado en la planificación, con variaciones debidas a la incertidumbre de localización.

Conclusiones: La dosis calculada sobre volúmenes determinados sobre imagen cone beam obtenida durante el tratamiento, permite reevaluar las condiciones dosimétricas asociadas a la prescripción.

Referencias

Fernández Letón P, Baños Capilla MC, Bea Gilabert J, Delgado Rodríguez JM, De Blas Piñol R, Martínez Ortega J et al: Recomendaciones de la Sociedad Española de Física Médica (SEFM) sobre implementación y uso clínico de radioterapia estereotáxica extracraneal (SBRT) Rev Fis Med 2017;18(2):77-142 https://revistadefisicamedica.es/index.php/rfm/article/view/247

Benedict SH, Yenice KM, Followill D, Galvin JM, Hinson W, Kavanagh B, et al. Sterotactic body radiation therapy: The report of AAPM Task Group 101, Med Phys 2010;37(8):4078-4101. https://doi.org/10.1118/1.343808

Keall PJ, Mageras GS, Balter J, Emery RS, Forster K, Jiang S et al. The management of respiratory motion in radiation oncology report of AAPM Task Group 76. Med Phys 2006;33(10):3874-3900. https://doi.org/10.1118/1.2349696

IAEA-TRS-483 Dosimetry of Small Static Fields used in External Beam Radiotherapy. An IAEA-AAPM International Code of Practice for Reference and Relative Dose Determination 2017

Yu CS, Jaffray DA, Wong JW. The effects of intra-fraction organ motion on the delivery of dynamic intensity modulation, Phys Med Biol 1998;43(1):91-104. https://doi.org/10.1088/0031-9155/43/1/006

ICRU Report No. 91 Prescribing, recording and reporting of stereotactic treatments with small photon beams, Journal of the ICRU Volume 14 No 2 2014

Wiant D, Vanderstraeten C, Maurer J, Pursley J, Terrel J, Sintay BJ, On the validity of density overrides for VMAT lung SBRT planning, Med Phys 2014;41(8);081707. https://doi.org/10.1118/1.4887778

Zvolanek K, Ma R, Zhou C, Liang X, Wang S, Verma V et al., Still equivalent for dose calculation in the Monte Carlo era? A comparison of free breathing and average intensity projection CT datasets for lung SBRT using three generations of dose calculation algorithms, Med Phys 2017;44(5);1939-1947 https://doi.org/10.1002/mp.12193

Disher B, Hajdok G, Gaede S, Battista JJ, An in-depth Monte Carlo study of lateral electron disequilibrium for small fields in ultra-low density lung: implications for modern radiation therapy, Phys Med Biol 2012;57(6);1543-59. https://doi.org/10.1088/0031-9155/57/6/1543

Qin Y, Chetty I, The Impact of Density Overrides in IMRT and VMAT Planning for Lung Cancer Patients Treated SBRT. En: AAPM 58th Annual Meeting & Exhibition. Washington, DC; 2016. Presentation SU-F-T-543. https://doi.org/10.1118/1.4956728

Yuan Z, Rong Y, Benedict SH, Daly ME, Qiu J, “Dose of the day” based on cone beam computed tomography and deformable image registration for lung cáncer radiotherapy, J Appl Clin Med Phys 2020;21:1:88-94. https://doi.org/10.1002/acm2.12793

Bea-Gilabert J, Baños-Capilla MC, García-Martínez MA, López-Muñoz E, Larrea-Rabassa LM, An alternative approach to GTV margin determination in stereotactic body radiotherapy, J Radiosurg SBRT 2019;6(1)45-54. https://www.oldcitypublishing.com/journals/jrsbrt-home/jrsbrt-issue-contents/journal-of-radiosurgery-sbrt-volume-6-number-1-2019/journal-of-radiosurgery-sbrt-6-1-p-45-54/

Sonke JJ, Rossi M, Wolthaus J, Van Herk M, Damen E, Belderbos J. Frameless stereotactic body radiotherapy for lung cancer using four- dimensional cone beam CT guidance, Int Jour Rad Onc Biol Phys 2009;74:567-574. https://doi.org/10.1016/j.ijrobp.2008.08.004

Van Herk M, Different styles of Image-guided Radiotherapy, Sem Rad Onc 2007;17:258-267. https://doi.org/10.1016/j.semradonc.2007.07.003

Kawrakow I, Fippel M, Friedrich K, 3D electron dose calculation using a Voxel based Monte Carlo algorithm (VMC), Med Phys 1996;23:445–57. https://doi.org/10.1118/1.597673

Fippel M, Fast Monte Carlo dose calculation for photon beams based on the VMC electron algorithm, Med Phys. 1999;26:1466–75. https://doi.org/10.1118/1.598676

Ahnesjo A, Collapsed cone convolution of radiant energy for photon dose calculation in heterogeneous media, Med Phys 1989;16(4);577-592. https://doi.org/10.1118/1.596360

Stambaugh C, Nelms BE, Dilling T, Stevens C, Latifi K, Zhang G et al., Experimentally studied dynamic dose interplay dose not meaningfully affect target dose in VMAT SBRT lung treatments, Med Phys 2013;40(9);091710-1-8. http://dx.doi.org/10.1118/1.4818255

Andreo P, Dose to 'water-like' media or dose to tissue in MV photons radiotherapy treatment planning: still a matter of debate, Phys Med Biol 2015;60(1);309-337. https://doi.org/10.1088/0031-9155/60/1/309

Ma CM, Li J, Dose specification for radiation therapy: dose to water or dose to medium? Phys Med Biol 2011;56(10);3073-3089. https://doi.org/10.1088/0031-9155/56/10/012

Siebers JV, Keall PJ, Nahum AE, Mohan R, Converting absorbed dose to medium to absorbed dose to water for Monte Carlo based photon beam dose calculations Phys Med Biol 2000;45(4);983-995. https://doi.org/10.1088/0031-9155/45/4/313

Rana S, Rogers K, Pokharel S, Cheng CY, Evaluation of Acuros XB algorithm based on RTOG 0313 dosimetric criteria for SBRT lung treatment with RapidArc, J Appl Clin Med Phys 2014;15:1:118-129. https://doi.org/10.1120/jacmp.v15i1.4474

Archibald-Heeren BR, Byrne MV, Hu Y, Cai M, Wang Y, Robust optimization of VMAT for lung cancer: Dosimetric implications of motion compensation techniques, J Appl Clin Med Phys 2017;18:5:104-116. https://doi.org/10.1002/acm2.12142

Unkelbach J, Alber M, Banger M, Bokrantz R, Chan TCY, O Deasy J et al., Robust radiotherapy planning, Phys Med Biol 2018;63(22)TR02. https://doi.org/10.1088/1361-6560/aae659

Descargas

Publicado

2020-11-23

Número

Sección

Artículos científicos

Cómo citar

Análisis dosimétrico de las incertidumbres derivadas del movimiento y las variaciones de densidad evaluadas con Radioterapia Guiada por la Imagen en Radioterapia Esterotáxica de pulmón. (2020). Revista De Física Médica, 21(2), 31-41. https://doi.org/10.37004/sefm/2020.21.2.003

Artículos similares

191-200 de 235

También puede Iniciar una búsqueda de similitud avanzada para este artículo.