Conversión de matrices de dosis en términos de dosis biológica equivalente y dosis equivalente a 2 Gy por sesión

Autores/as

  • Jaime Martí Asenjo Servicio de radiofísica y protección radiológica - Hospital HM Sanchinarro
  • Miguel Angel de la Casa de Julián Servicio de radiofísica y protección radiológica - Hospital HM Sanchinarro
  • Leyre Alonso Iracheta Servicio de radiofísica y protección radiológica - Hospital HM Sanchinarro
  • Alejandro Prado Barragán Servicio de radiofísica y protección radiológica - Hospital HM Sanchinarro
  • Inés Flores Cacho Servicio de radiofísica y protección radiológica - Hospital HM Sanchinarro
  • Beatriz Álvarez Rodríguez Servicio de oncología radioterápica - Hospital HM Sanchinarro
  • María del Carmen Rubio Rodríguez Servicio de oncología radioterápica - Hospital HM Sanchinarro
  • Pedro Fernández Letón Servicio de radiofísica y protección radiológica - Hospital HM Sanchinarro

DOI:

https://doi.org/10.37004/sefm/2021.22.2.001

Palabras clave:

dosis biológica equivalente, dosis equivalente a 2 Gy sesión, radiobiología, dosimetría, re-irradiation

Resumen

La re-irradiación de pacientes en radioterapia ha sido siempre un proceso complejo. Las herramientas disponibles en los sistemas de planificación de tratamiento actuales permiten generalmente el registro de imágenes y la suma las dosis administradas, pero el uso cada vez más habitual de hipofraccionamientos y esquemas de tratamiento acelerados supone que esta suma de planes sea difícil de evaluar correctamente. Esta circunstancia añade incertidumbre a la definición de volúmenes de tratamiento y la prescripción de dosis. Se ha desarrollado una herramienta para convertir las matrices de dosis de tratamiento en matrices de dosis biológica equivalente y dosis equivalente a 2 Gy por sesión. La herramienta genera archivos de dosis según el estándar DICOM, por lo que pueden ser importados en el sistema de planificación de tratamientos para evaluar la suma de planes con distintos fraccionamientos. El presente estudio describe el proceso de creación de la herramienta y analiza su posible uso clínico. Los resultados muestran una correcta alineación entre las matrices de dosis calculadas y la imagen, así como posibles limitaciones en su uso, especialmente en la evaluación de dosis a punto en los márgenes de las estructuras definidas. El uso de la herramienta es adecuado y útil para la práctica clínica pero requiere una comprensión de su  funcionamiento y limitaciones.

Referencias

Bryant AK, Banegas MP, Martinez ME, Mell LK, Murphy JD. Trends in Radiation Therapy among Cancer Survivors in the United States, 2000-2030. Cancer Epidemiol Biomarkers Prev. 2017 Jun;26(6):963-970. doi: 10.1158/1055-9965.EPI-16-1023. Epub 2017 Jan 17. PMID: 28096199.

Paradis KC, Mayo C, Owen D, et al. The Special Medical Physics Consult Process for Re-irradiation Patients. Advances in Radiation Oncology. 2019 Oct-Dec;4(4):559-565.

Gogineni E, Zhang I, Rana Z, Marrero M, Gill G, Sharma A, Riegel AC, Teckie S, Ghaly M. Quality of Life Outcomes Following Organ-Sparing SBRT in Previously Irradiated Recurrent Head and Neck Cancer. Front Oncol. 2019 Sep 10;9:836.

Dionisi F et al. Organs at risk's tolerance and dose limits for head and neck cancer re-irradiation: A literature review. Oral Oncology. Volume 98, November 2019, pp

Scorsetti M, Comito T, Clerici E, et al. Phase II trial on SBRT for unresectable liver metastases: long-term outcome and prognostic factors of survival after 5 years of follow-up. Radiat Oncol. 2018;13(1):234. Published 2018 Nov 26.

Bergamo Am, Kauweloa K, Gan G, Shi Z, Daniels K, Crownover R, Narayanasamy G, Stathakis S, Mavroidis P, Papanikolaou N, Gutierrez A. Correlation between biological effective dose and radiation-induced liver disease from hypofractionated radiotherapy. J Med Phys 2019;44:185-190

Gebhardt BJ, Vargo JA, Ling D, et al. Carotid Dosimetry and the Risk of Carotid Blowout Syndrome After Re-irradiation With Head and Neck Stereotactic Body Radiation Therapy. Int J Radiat Oncol Biol Phys. 2018;101(1):195‐200.

McDonald MW, Moore MG, Johnstone PA. Risk of carotid blowout after re-irradiation of the head and neck: a systematic review. Int J Radiat Oncol Biol Phys. 2012;82(3):1083‐1089.

Yazici G, Sanlı TY, Cengiz M, et al. A simple strategy to decrease fatal carotid blowout syndrome after stereotactic body reirradiaton for recurrent head and neck cancers. Radiat Oncol. 2013;8:242. Published 2013 Oct 18.

Abusaris H, Hoogeman M, Nuyttens JJ. Re-irradiation: outcome, cumulative dose and toxicity in patients retreated with stereotactic radiotherapy in the abdominal or pelvic region. Technol Cancer Res Treat. 2012;11(6):591-597. doi:10.7785/tcrt.2012.500261

Kauweloa KI, Bergamo A, Gutierrez AN, Stathakis S, Papanikolaou N, Mavroidis P. Use of 3D biological effective dose (BED) for optimizing multi-target liver cancer treatments. Australas Phys Eng Sci Med. 2019;42(3):711‐718

Fowler JF. The linear-quadratic formula and progress in fractionated radiotherapy. Br J Radiol. 1989;62(740):679‐694. doi:10.1259/0007-1285-62-740-679

Maciá I Garau M. Radiobiology of stereotactic body radiation therapy (SBRT). Reports of practical oncology and radiotherapy 22 (2017) 86-95

Hopewell JW, Millar WT, Lindquist C, Nordström H, Lidberg P, Gårding J. Application of the concept of biologically effective dose (BED) to patients with Vestibular Schwannomas treated by radiosurgery. J Radiosurg SBRT. 2013;2(4):257-271.

Fernández Letón P, Baños Capilla C, Bea Gilabert J, Delgado Rodríguez JM, De Blas Piñol R, Martínez Ortega J, Pérez Moreno JM, Simón de Blas R. Recomendaciones de la Sociedad Española de Física Médica (SEFM) sobre implementación y uso clínico de radioterapia estereotáxica extracraneal (SBRT). Rev Fis Med 2017;18(2):77-142

Kuperman VY. Effect of intratumor heterogeneity on BED for hypofractionated dose regimens. Med Phys. 2019 Oct;46(10):4690-4698. doi: 10.1002/mp.13689. Epub 2019 Aug 16. PMID: 31257607.

Sun, J., Zhang, T., Wang, J. et al. Biologically effective dose (BED) of stereotactic body radiation therapy (SBRT) was an important factor of therapeutic efficacy in patients with hepatocellular carcinoma (≤5 cm). BMC Cancer 19, 846 (2019). https://doi.org/10.1186/s12885-019-6063-9

García LM, Leblanc J, Wilkins D, et al. Fitting the linear quadratic model to detailed data sets for different dose ranges. Phys Med Biol 2006;51(11):2813-23.

Barendsen GW. Dose fractionation, dose rate and iso-effect relationships for normal tissue responses. Int J Radiat Oncol Biol Phys 1982;8(11):1981-97.

Kirkpatrick JP, Meyer JJ, Marks LB. The linear-quadratic model is inappropriate to model high dose per fraction effects in radiosurgery. Semin Radiat Oncol 2008;18(4):240-3.

Marks LB. Extrapolating hypofractionated radiation schemes from radiosurgery data: regarding Hall et al., IJROBP 21:819-824; 1991 and Hall and Brenner, IJROBP 25:381-385; 1993. Int J Radiat Oncol Biol Phys 1995;32:274-6

Guirado D, et al. Radiobiología Clínica. ISBN:8950734

Digital Imaging and Communications in Medicine. DICOM. Octubre 2020.

Kehwar TS. Analytical approach to estimate normal tissue complication probability using best fit of normal tissue tolerance doses into the NTCP equation of the linear quadratic model. J Cancer Res Ther. 2005;1:168–179.

Matlab Image Processing Toolbox: User's Guide (R2019a). The Mathworks Inc. Natick, MA, 2019.

Raystation 4.7 User Manual. RaySearch Laboratories AB. Estocolmo, Suecia, 2014.

Kirkpatrick JP, Brenner DJ, Orton CG. The linear-quadratic model is inappropriate to model high dose per fraction effects in radiosurgery. Med Phys. 2009;36:3381–4

David J. Brenner. The linear-quadratic model is an appropriate methodology for determining iso-effective doses at large doses per fraction. Semin Radiat Oncol. 2008 October ; 18(4): 234–239. doi:10.1016/j.semradonc.2008.04.004

Martin Brown J, Carlson David J, Brenner David J. The Tumor Radiobiology of SRS and SBRT: Are More than the 5 R’s Involved? Int J Radiat Oncol Biol Phys. 2014 February 1; 88(2): 254–262. doi:10.1016/j.ijrobp.2013.07.022

Pollom EL, Chin AL, Diehn M, Loo BW, Chang DT. Normal Tissue Constraints for Abdominal and Thoracic Stereotactic Body Radiotherapy. Semin Radiat Oncol. 2017 Jul;27(3):197-208. doi: 10.1016/j.semradonc.2017.02.001. Epub 2017 Feb 20. PMID: 28577827

Nieder C, Milas L, Ang KK. Tissue tolerance to reirradiation. Semin Radiat Oncol. 2000 Jul;10(3):200-9. doi: 10.1053/srao.2000.6593. PMID: 11034631.

Armstrong S, Hoskin P. Complex Clinical Decision-Making Process of Re-Irradiation. Clin Oncol (R Coll Radiol). 2020 Nov;32(11):688-703. doi: 10.1016/j.clon.2020.07.023. Epub 2020 Sep 3. PMID: 32893056.

Nieder C. Second re-irradiation: A delicate balance between safety and efficacy. Phys Med. 2019 Feb;58:155-158. doi: 10.1016/j.ejmp.2019.01.004. Epub 2019 Jan 8. PMID: 30635148.

Stewart FA, van der Kogel AJ. Retreatment Tolerance of Normal Tissues. Semin Radiat Oncol. 1994 Apr;4(2):103-111. doi: 10.1053/SRAO00400103. PMID: 10717096.

Descargas

Publicado

2021-11-05

Número

Sección

Artículos científicos

Cómo citar

Conversión de matrices de dosis en términos de dosis biológica equivalente y dosis equivalente a 2 Gy por sesión. (2021). Revista De Física Médica, 22(2), 11-21. https://doi.org/10.37004/sefm/2021.22.2.001

Artículos similares

61-70 de 141

También puede Iniciar una búsqueda de similitud avanzada para este artículo.