Radioembolización Hepática con microesferas de 90Y: aspectos metodológicos y dosimétricos

  • Verónica Morán Servicio de Radiofísica y Protección Radiológica. Clínica Universidad de Navarra (Madrid).
  • Elena Prieto Servicio de Radiofísica y Protección Radiológica. Clínica Universidad de Navarra (Pamplona).
  • Lidia Sancho Servicio de Medicina Nuclear. Clínica Universidad de Navarra (Madrid).
  • Macarena Rodríguez-Fraile Servicio de Medicina Nuclear. Clínica Universidad de Navarra (Pamplona).
  • Josep M Martí-Climent Servicio de Radiofísica y Protección Radiológica. Clínica Universidad de Navarra (Pamplona).
Palabras clave: 90Y, Radioembolización, dosis absorbida, microesferas, dosimetría tridimensional

Resumen

La radioembolización (RE) o radioterapia interna selectiva consiste en la administración de microesferas marcadas con 90Y por la arteria hepática. En un tratamiento de RE se llevan a cabo varios procesos: la valoración de la vascularización hepática, una adecuada planificación del tratamiento (que incluye una simulación del mismo), el cálculo de la actividad a administrar, la propia administración del tratamiento, y finalmente la evaluación de la distribución del tratamiento. Para ello es necesaria la colaboración de un equipo multidisciplinar formado por oncólogos, hepatólogos, radiólogos intervencionistas, médicos nucleares, radiofarmacéuticos y radiofísicos.

En los últimos años se ha producido un aumento del número de publicaciones que incluyen los aspectos dosimétricos de los tratamientos de RE y su relación con los efectos terapéuticos obtenidos. Una evaluación dosimétrica adecuada es fundamental para el desarrollo de un plan de tratamiento individualizado y para la optimización de la eficacia de la RE con una toxicidad aceptable.

En este trabajo se realiza una revisión de los principales aspectos metodológicos implicados en las diferentes etapas de un tratamiento de RE. Asimismo, se describen y analizan los diferentes modelos dosimétricos actualmente disponibles, incluyendo la dosimetría tridimensional a nivel de vóxel.

Citas

Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359-86.

Yoo HS, Park CH, Suh JH, Lee JT, Kim DI, Kim BS, et al. Radioiodinated fatty acid esters in the management of hepatocellular carcinoma: preliminary findings. Cancer Chemother Pharmacol. 1989;23 Suppl:S54-8.

Ingold JA, Reed GB, Kaplan HS, Bagshaw MA. Radiation Hepatitis. Am J Roentgenol Radium Ther Nucl Med. 1965 Jan;93:200-8.

Dominello M, Bowers J, Zaki M, Konski A. Radiotherapy and radioembolization for liver metastases. Ann Palliat Med. 2014;3(2):104-13.

Kennedy A, Coldwell D, Sangro B, Wasan H, Salem R. Radioembolization for the Treatment of Liver Tumors General Priciples. Am J Clin Oncol. 2012;35(1):91-9.

Sangro B, Iñarrairaegui M, Bilbao JI. Radioembolization for hepatocellular carcinoma. J Hepatol. 2012;56(2):464-73.

Lau W-Y, Kennedy AS, Yun Y, Kim H, Hee K, Lai MRCP, et al. Patient selection and activity planning guide for selective internal radiotherapy with 90Y resin microspheres. Radiat Oncol Biol. 2012;82:401-7.

Breedis C, Young G. The blood supply of neoplasms in the liver. Am J Pathol. 1954;30(5):969-85.

Rodriguez-Fraile M, Inarrairaegui M. Radioembolization with 90Y-microspheres for liver tumors. Rev Esp Med Nucl Imagen Mol. 2015;34(4):244-57.

Cremonesi M, Chiesa C, Strigari L, Ferrari M, Botta F, Guerriero F, et al. Radioembolization of hepatic lesions from a radiobiology and dosimetric perspective. Front Oncol. 2014;4.

Consejo de la Unión Europea (2014). DIRECTIVA 2013/59/EURATOM del Consejo de 5 de diciembre de 2013, por la que se establecen normas de seguridad basicas para la protección contra los peligros derivados de la exposición a radiaciones ionizantes. Diario Oficial de la Unión Europea; nº. L13, pp. 1-73.

Chiesa C, Maccauro M, Romito R, Spreafico C, Pellizzari S, Negri A, et al. Need, feasibility and convenience of dosimetric treatment planning in liver selective internal radiation therapy with 90Y microspheres: the experience of the National Tumor Institute of Milan. J Nucl Med Mol imaging. 2011;55(2):168-97.

D’Arienzo M, Filippi L, Chiaramida P, Chiacchiararelli L, Cianni R, Salvatori R, et al. Absorbed dose to lesion and clinical outcome after liver radioembolization with 90Y microspheres: a case report of PET-based dosimetry. Ann Nucl Med. 2013;27(7):676-80.

Srinivas SM, Natarajan N, Kuroiwa J, Gallagher S, Nasr E, Shah SN, et al. Determination of Radiation Absorbed Dose to Primary Liver Tumors and Normal Liver Tissue Using Post-Radioembolization 90Y PET. Frontiers in Oncology. 2014;4:255.

Garin E, Laffont S, Rolland Y, Lebtahi R, Leguludec D, Dieudonne A, et al. Clinical Feasibility of Fast 3-Dimensional Dosimetry of the Liver for Treatment Planning of Hepatocellular Carcinoma. 2015;52(12):1930-8.

Garin E, Rolland Y, Edeline J, Icard N, Lenoir L, Laffont S, et al. Personalized Dosimetry with Intensification Using 90Y-Loaded Glass Microsphere Radioembolization Induces Prolonged Overall Survival in Hepatocellular Carcinoma Patients with Portal Vein Thrombosis. J Nucl Med. 2015;56(3):339-46.

Kao YH, Steinberg JD, Tay YS, Lim GK, Yan J, Townsend DW, et al. Post-radioembolization 90Y PET/CT - part 2: dose response and tumor predictive dosimetry for resin microspheres. EJNMMI Res. 2013 Jul;3(1):57.

Kennedy A, Dezarn W, Weiss A. Patient Specific 3D Image-Based Radiation Dose Estimates for 90Y Microsphere Hepatic Radioembolization in Metastatic Tumors. J Nucl Med Radiat Ther. 2011;01(01):1-8.

Mikell JK, Mahvash A, Siman W, Mourtada F, Kappadath SC. Comparing voxel-based absorbed dosimetry methods in tumors, liver, lung, and at the liver-lung interface for 90Y microsphere selective internal radiation therapy. EJNMMI Phys. 2015;2(1):1-14.

Pacilio M, Amato E, Lanconelli N, Basile C, Torres LA, Botta F, et al. Differences in 3D dose distributions due to calculation method of voxel S-values and the influence of image blurring in SPECT. 2015;60:1945-64.

Pasciak AS, Bourgeois AC, McKinney JM, Chang TT, Osborne DR, Acuff SN, et al. Radioembolization and the dynamic role of 90Y PET/CT. Front Oncol. 2014;4.

Smits MLJ, Elschot M, Sze DY, Kao YH, Nijsen JFW, Iagaru AH, et al. Radioembolization Dosimetry: The Road Ahead. Cardiovasc Intervent Radiol. 2015;38(2):261-9.

Dezarn WA, Cessna JT, DeWerd LA, Feng W, Gates VL, Halama J, et al. Recommendations of the American Association of Physicists in Medicine on dosimetry, imaging, and quality assurance procedures for 90Y microsphere brachytherapy in the treatment of hepatic malignancies. Med Phys. 2011;38(8):4824-45.

Giammarile F, Bodei L, Chiesa C, Flux G, Forrer F, Kraeber-Bodere F, et al. EANM procedure guideline for the treatment of liver cancer and liver metastases with intra-arterial radioactive compounds. Eur J Nucl Med Mol Imaging. 2011;38(7):1393-406.

Lassmann M, Chiesa C, Flux G, Bardiès M. EANM Dosimetry Committee guidance document : good practice of clinical dosimetry reporting. Eur J Nucl Med Mol Imaging.2011;38(1):192-200.

Lewandowski RJ, Sato KT, Atassi B, Ryu RK, Nemcek AA, Kulik L, et al. Radioembolization with 90Y microspheres: Angiographic and technical considerations. Cardiovasc Intervent Radiol. 2007;30(4):571-92.

Leung TWT, Lau W-Y, Ho SKW, Ward SC, Chow JHS, Chan MSY, et al. Radiation pneumonitis after selective internal radiation treatment with intraarterial 90Y-microspheres for inoperable hepatic tumors. Int J Radiat Oncol Biol Phys. 1995; 33(4):919-24.

Carretero C, Munoz-Navas M, Betes M, Angos R, Subtil JC, Fernandez-Urien I, et al. Gastroduodenal injury after radioembolization of hepatic tumors. Am J Gastroenterol. 2007;102(6):1216-20.

Sancho L, Rodriguez-Fraile M, Bilbao JI, Arteta CB, Iñarrairaegui M, Moran V, et al. Is a 99mTc-Macroaggregated Albumin Scan Essential in the Workup for Selective Internal Radiation Therapy with 90Y? An Analysis of 532 Patients. J Vasc Interv Radiol. 2017;28(11):1536-42.

Garin E, Lenoir L, Rolland Y, Laffont S, Pracht M, Mesbah H, et al. Effectiveness of quantitative MAA SPECT/CT for the definition of vascularized hepatic volume and dosimetric approach: phantom validation and clinical preliminary results in patients with complex hepatic vascularization treated with 90Y-labeled micr. Nucl Med Commun. 2011;32(12):1245-55.

Ho S, Lau WY, Leung TWT, Chan M, Ngar YK, Johnson PJ, et al. Partition model for estimating radiation doses from 90Y microspheres in treating hepatic tumours. Eur J Nucl Med. 1996;23(8):947-52.

Flamen P, Vanderlinden B, Delatte P, Ghanem G, Ameye L, Eynde M Van Den, et al. Multimodality imaging can predict the metabolic response of unresectable colorectal liver metastases to radioembolization therapy with 90Y labeled resin microspheres. Phys Med Biol. 2008;53(22):6591.

Machac J, Muzinic M, Dacosta M, Zhang Z, Ph D, Heiba S. Quantitative comparison of 90Y-microspheres and technetium-99mTc-macroaggregated albumin SPECT images for planning 90Y therapy of liver cancer. 2010;9(3):253-61.

Wondergem M, Smits ML, Elschot M, de Jong HW, Verkooijen HM, van den Bosch MA, et al. 99mTc-macroaggregated albumin poorly predicts the intrahepatic distribution of 90Y resin microspheres in hepatic radioembolization. J Nucl Med. 2013;54(8):1294-301.

Manli J. Aaron F. Scott N. Sherif H. Zhuangyu Z. Karin K. et al. Segmental perfusion differences on paired 99mTc-macroaggregated albumin (MAA) hepatic perfusion imaging and 90Y bremsstrahlung imaging studies in SIR-sphere radioembolization: associations with angiography. J Nucl Med Radiat Ther. 2012;3(1).

Chang TT, Bourgeois AC, Balius AM, Pasciak AS. Treatment modification of 90Y radioembolization based on quantitative positron emission tomography/CT imaging. J Vasc Interv Radiol. 2013;24(3):333-7.

Sirtex Medical Limited. Sirtex Package Insert. 2017;57(3):3-5. Available from: https://www.sirtex.com/eu/clinicians/package-insert/

Biocompatibles UK Ltd. Package Insert – TheraSphere® 90Y Glass Microspheres–Rev. 14. 2014;1-21. Available from: https://www.btg-im.com/BTG/media/TheraSphere-Documents/PDF/TheraSphere-Package-Insert_USA_Rev-14.pdf

Kao YH, Magsombol BM, Toh Y, Tay KH, Chow PK, Goh AS, et al. Personalized predictive lung dosimetry by 99mTcmacroaggregated albumin SPECT/CT for 90Y radioembolization. EJNMMI Research. 2014;4:33. doi: 10.1186/s13550-014-0033-7.

Yu N, Srinivas SM, Difilippo FP, Shrikanthan S, Levitin A, McLennan G, et al. Lung dose calculation with SPECT/CT for 90Y radioembolization of liver cancer. Int J Radiat Oncol Biol Phys. 2013;85(3):834-9.

Kennedy AS, McNeillie P, Dezarn WA, Nutting C, Sangro B, Wertman D, et al. Treatment parameters and outcome in 680 treatments of internal radiation with resin 90Y-microspheres for unresectable hepatic tumors. Int J Radiat Oncol Biol Phys. 2009;74(5):1494-500.

Kennedy A, Nag S, Salem R, Murthy R, McEwan AJ, Nutting C, et al. Recommendations for Radioembolization of Hepatic Malignancies Using 90Y Microsphere Brachytherapy: A Consensus Panel Report from the Radioembolization Brachytherapy Oncology Consortium. Int J Radiat Oncol Biol Phys. 2007;68(1):13-23.

Braat AJAT, Smits MLJ, Braat MNGJA, van den Hoven AF, Prince JF, de Jong HWAM, et al. 90Y Hepatic Radioembolization: An Update on Current Practice and Recent Developments. J Nucl Med. 2015;56(7):1079-87.

Vauthey J, Abdalla EK, Doherty DA, Gertsch P, Fenstermacher MJ, Loyer EM, et al. Body surface area and body weight predict total liver volume in Western adults. Liver Transplant. 2002;8(3):233-40.

Kao YH, Tan EH, Ng CE, Goh SW. Clinical implications of the body surface area method versus partition model dosimetry for 90Y radioembolization using resin microspheres: a technical review. Ann Nucl Med. 2011;25(7):455-61.

Lam MGEH, Louie JD, Abdelmaksoud MHK, Fisher GA, Cho-Phan CD, Sze DY. Limitations of body surface areabased activity calculation for radioembolization of hepatic metastases in colorectal cancer. J Vasc Interv Radiol. 2014;25(7):1085-93.

Dewaraja YK, Frey EC, Sgouros G, Brill AB, Roberson P, Zanzonico PB, et al. MIRD Pamphlet No. 23: Quantitative SPECT for Patient-Specific 3-Dimensional Dosimetry in Internal Radionuclide Therapy. 2015;53(23):1310-26.

Salem R, Thurston KG. Radioembolization with 90Y Microspheres: A State-of-the-Art Brachytherapy Treatment for Primary and Secondary Liver Malignancies: Part 1: Technical and Methodologic Considerations. J Vasc Interv Radiol. 2006;17(8):1251–78.

Garin E, Rolland Y, Lenoir L, Pracht M, Mesbah H, Poree P, et al. Utility of Quantitative Tc-MAA SPECT/CT for yttrium-Labelled Microsphere Treatment Planning: Calculating Vascularized Hepatic Volume and Dosimetric Approach. Int J Mol Imaging. 2011;2011:398051.

Garin E, Lenoir L, Rolland Y, Edeline J, Mesbah H, Laffont S, et al. Dosimetry based on 99mTc-macroaggregated albumin SPECT/CT accurately predicts tumor response and survival in hepatocellular carcinoma patients treated with 90Y-loaded glass microspheres: preliminary results. J Nucl Med. 2012 Feb;53(2):255-63.

Garin E, Lenoir L, Edeline J, Laffont S, Mesbah H, Porée P, et al. Boosted selective internal radiation therapy with 90Y-loaded glass microspheres (B-SIRT) for hepatocellular carcinoma patients: a new personalized promising concept. Eur J Nucl Med Mol Imaging [Internet]. 2013;40(7):1057–68. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3679421&tool=pmcentrez&rendertype=abstract

Ab N, Hashikin A, Yeong C, Velden S Van Der, Flamen P, Vanderlinden B. Dosimetry and prescription in liver radioembolization with 90Y microspheres: 3D calculation of tumor-toliver ratio from global Tc-MAA SPECT information Dosimetry and prescription in liver radioembolization with 90Y microspheres: 3D calculation of tum.

Gil-alzugaray B, Chopitea A, Mercedes I, Bilbao JI, Rodriguezfraile M, Rodriguez J, et al. Prognostic factors and prevention of radioembolization-induced liver disease. Hepatology. 2013;57(3):1078-87.

Ho S, Lau WY, Leung TW, Chan M, Johnson PJ, Li AK. Clinical evaluation of the partition model for estimating radiation doses from 90Y microspheres in the treatment of hepatic cancer. Eur J Nucl Med. 1997 Mar;24(3):293-8.

Ho S, Lau WY, Leung TWT, Chan M, Chan KW, Lee WY, et al. Tumour-to-normal uptake ratio of 90Y microspheres in hepatic cancer assessed with 99mTc macroaggregated albumin. 1997;70(i):823-8.

Sancho LS, Thang SP, Li H, Khor LK, Tay YS, Myint KO, et al. A descriptive analysis of remnant activity during 90Y resin microspheres radioembolization of hepatic tumors: Technical factors and dosimetric implications. Ann Nucl Med. 2015;30(3):255-61.

Ahmadzadehfar H, Haslerud T, Reichmann K, Meyer C, Habibi E, Fimmers R, et al. Restaktivität nach Radioembolisation von Lebertumoren mit 90Y Harzmikrosphären Eine sichere Methode zur Berechnung. NuklearMedizin. 2014;53(3):95-8.

Ahmadzadehfar H, Muckle M, Sabet A, Wilhelm K, Kuhl C, Biermann K, et al. The significance of bremsstrahlung SPECT/CT after 90Y radioembolization treatment in the prediction of extrahepatic side effects. Eur J Nucl Med Mol Imaging. 2012;39(2):309-15.

Elschot M, Nijsen JFW, Dam AJ, de Jong HWAM. Quantitative evaluation of scintillation camera imaging characteristics of isotopes used in liver radioembolization. PLoS One. 2011;6(11).

Ito S, Kurosawa H, Kasahara H, Teraoka S, Ariga E, Deji S, et al. 90Y bremsstrahlung emission computed tomography using gamma cameras. Ann Nucl Med. 2009;23(3):257-67.

Ford KW. Predicted 0+ Level in 40Zr90. Phys Rev [Internet]. 1955 Jun 1;98(5):1516-7. Available from: https://link.aps.org/doi/10.1103/PhysRev.98.1516

D’Arienzo M, Chiaramida P, Chiacchiararelli L, Coniglio A, Cianni R, Salvatori R, et al. 90Y PET-based dosimetryafter selective internal radiotherapy treatments. Nucl Med Commun. 2012 Jun;33(6):633-40.

Kao Y-H, Steinberg JD, Tay Y-S, Lim GKY, Yan J, Townsend DW, et al. Post-radioembolization 90Y PET/CT-part 1: diagnostic reporting. EJNMMI Res. 2013;3(1):56.

Lhommel R, Elmbt L Van, Goffette P, den Eynde M Van, Jamar F, Pauwels S, et al. Feasibility of 90Y TOF PET-based dosimetry in liver metastasis therapy using SIR-Spheres. Eur J Nucl Med Mol Imaging. 2010;37(9):1654-62.

Willowson K, Forwood N, Jakoby BW, Smith AM, Bailey DL. Quantitative 90Y image reconstruction in PET. Med Phys. 2012;39(11):7153-9.

Martí-Climent JM, Prieto E, Elosúa C, Rodríguez-Fraile M, Domínguez-Prado I, Vigil C, et al. PET optimization for improved assessment and accurate quantification of 90Y-microsphere biodistribution after radioembolization. Med Phys. 2014;41(9).

Wondergem M, Smits MLJ, Elschot M, Jong HWAM De, Verkooijen HM, Maurice AAJ, et al. Intrahepatic Distribution of 90Y Resin Microspheres in Hepatic Radioembolization. 2013;1-8.

Erbe EM, Day DE. Chemical durability of Y2O3-Al2O3-SiO2 glasses for the in vivo delivery of beta radiation. J Biomed Mater Res. 27(10):1301-8.

Kim YC, Kim YH, Uhm SH, Seo YS, Park EK, Oh SY, et al. Radiation safety issues in 90Y microsphere selective hepatic radioembolization therapy: Possible radiation exposure from the patients. Nucl Med Mol Imaging (2010). 2010;44(4):252-60.

Gulec SA, Siegel JA. Posttherapy Radiation Safety Considerations in Radiomicrosphere Treatment with 90Y-Microspheres. 2007;48(12):2080-6.

Bolch WE, Eckerman KF, Sgouros G, Thomas SR. MIRD Pamphlet No. 21: A Generalized Schema for Radiopharmaceutical Dosimetry--Standardization of Nomenclature. J Nucl Med. 2009;50(3):477-84.

Loevinger R, Budinger TF, Watson EE, ). S of NM (1953-, Committee. MIRD. MIRD primer for absorbed dose calculations. New York, NY: Society of Nuclear Medicine; 1988.

J ICRU 2. International Commision on Radiation Units and Measurements, “ICRU Repor 67. Absorbed Dose Specification in Nuclear Medicine.” 2002.

R BML. “A revised Schema for Calculating the absorbed Dose from Biologically Distributed Radionuclides. MIRD Pamphlet No.1. Revised ed.,.” 1976.

Siegel J a, Thomas SR, Stubbs JB, Stabin MG, Hays MT, Koral KF, et al. MIRD pamphlet no. 16: Techniques for quantitative radiopharmaceutical biodistribution data acquisition and analysis for use in human radiation dose estimates. J Nucl Med. 1999;40(2):37S-61S.

Dieudonne A, Garin E, Laffont S, Rolland Y, Lebtahi R, Leguludec D, et al. Clinical feasibility of fast 3-dimensional dosimetry of the liver for treatment planning of hepatocellular carcinoma with 90Y-microspheres. J Nucl Med. 2011;52(12):1930-7.

Chiesa C, Mira M, Maccauro M, Spreafico C, Romito R, Morosi C, et al. Radioembolization of hepatocarcinoma with 90Y glass microspheres: development of an individualized treatment planning strategy based on dosimetry and radiobiology. Eur J Nucl Med Mol Imaging. 2015;42(11):1718-38.

Bolch WE, Bouchet LG, Robertson JS, Wessels BW, Siegel JA, Howell RW, et al. MIRD pamphlet No. 17: the dosimetry of nonuniform activity distributions-radionuclide S values at the voxel level. Medical Internal Radiation Dose Committee. J Nucl Med. 1999;40(1):11S-36S.

Elschot M, Vermolen BJ, Lam MG, de Keizer B, van den Bosch MA, de Jong HW. Quantitative comparison of PET and Bremsstrahlung SPECT for imaging the in vivo 90Y microsphere distribution after liver radioembolization. PLoS One. 2013;8(2):e55742.

Lanconelli N, Pacilio M, Meo S Lo, Botta F, Dia A Di, Aroche LAT, et al. A free database of radionuclide voxel S values for the dosimetry of nonuniform activity distributions. Phys Med Biol. 2012;57:517-33.

Pasciak AS, Bourgeois AC, Bradley YC. A comparison of techniques for 90Y PET/CT image-based dosimetry following radioembolization with resin microspheres. Front Oncol. 2014;4.

Gulec SA, Sztejnberg ML, Siegel JA, Jevremovic T, Stabin M. Hepatic Structural Dosimetry in 90Y Microsphere Treatment: A Monte Carlo Modeling Approach Based on Lobular Microanatomy. 2010;301-10.

Lam MG, Goris ML, Iagaru AH, Mittra ES, Louie JD, Sze DY. Prognostic utility of 90Y radioembolization dosimetry based on fusion 99mTc-macroaggregated albumin-99mTc-sulfur colloid SPECT. J Nucl Med. 2013;54(12):2055-61.

Chiesa C, Mira M, Maccauro M, Romito R, Spreafico C, Sposito C, et al. A dosimetric treatment planning strategy in radioembolization of hepatocarcinoma with 90Y glass microspheres. QJ Nucl Med Mol Imaging. 2012;56(6):503-8.

Jaszczak J, Floyd E, Craig C. Improved SPECT Quantification Using Compensation for Scattered Photons. Medicine (Baltimore). 1984;25(8):893-900.

LaCroix KJ, Tsui BMW, Hasegawa BH, Brown JK. Investigation of the use of X-ray CT images for attenuation compensation in SPECT. IEEE Trans Nucl Sci. 1994;41(6):2793-9.

Geworski L, Knoop BO, de Cabrejas ML, Knapp WH, Munz DL. Recovery correction for quantitation in emission tomography: a feasibility study. Eur J Nucl Med. 2000;27(2):161-9.

Ritt P, Vija H, Hornegger J, Kuwert T. Absolute quantification in SPECT. Eur J Nucl Med Mol Imaging. 2011;38(1):69-77.

Zeintl J, Vija AH, Yahil A, Hornegger J, Kuwert T. Quantitative accuracy of clinical 99mTc SPECT/CT using ordered-subset expectation maximization with 3-dimensional resolution recovery, attenuation, and scatter correction. J Nucl Med. 2010 Jun;51(6):921-8.

Lam MGEH, Louie JD, Iagaru AH, Goris ML, Sze DY. Safety of repeated 90Y radioembolization. Cardiovasc Intervent Radiol. 2013;36(5):1320-8.

Zarva A, Mohnike K, Damm R, Ruf J, Seidensticker R, Ulrich G, et al. Safety of Repeated Radioembolizations in Patients with Advanced Primary and Secondary Liver Tumors and Progressive Disease After First Selective Internal Radiotherapy. J Nucl Med. 2014;55(3):360-6.

Strigari L, Sciuto R, Rea S, Carpanese L, Pizzi G, Soriani A, et al. Efficacy and Toxicity Related to Treatment of Hepatocellular Carcinoma with 90Y-SIR Spheres: Radiobiologic Considerations. J Nucl Med. 2010.

Ahmadzadehfar H, Sabet A, Muckle M, Wilhelm K, Reichmann K. Tc-MAA/90Y-Bremsstrahlung SPECT/CT after simultaneous Tc-MAA/90Y-microsphere injection for immediate treatment monitoring and further therapy planning for radioembolization. Eur J Nucl Med Mol Imaging 2011.

Dewaraja YK, Frey EC, Sgouros G, Brill AB, Roberson P, Zanzonico PB, et al. MIRD pamphlet No. 23: quantitative SPECT for patient-specific 3-dimensional dosimetry in internal radionuclide therapy. J Nucl Med. 2012;53(8):1310-25.

Acton PD, Zhuang H, Alavi A. Quantification in PET. Radiol Clin North Am. 2004;42(6):1055-62.

Publicado
2019-07-12
Cómo citar
Morán, V., Prieto, E., Sancho, L., Rodríguez-Fraile, M., & Martí-Climent, J. M. (2019). Radioembolización Hepática con microesferas de 90Y: aspectos metodológicos y dosimétricos. Revista De Física Médica, 20(1). Recuperado a partir de http://revistadefisicamedica.es/index.php/rfm/article/view/295
Sección
Artículos científicos