Validación de un algoritmo de obtención de biomarcadores de imágenes dinámicas de perfusión en tomografía computarizada
DOI:
https://doi.org/10.37004/sefm/2020.21.2.005Palabras clave:
perfusión, biomarcador de imagen, radiómica, TCResumen
A partir del análisis de las imágenes dinámicas de perfusión de contraste en tomografía computarizada, se pueden obtener parámetros que miden características fisiológicas relacionadas con la permeabilidad de los tejidos. Puesto que no existen elementos patrón con los que realizar calibraciones de los conjuntos de herramientas de adquisición y procesado, es necesario hacer una validación de los resultados obtenidos con el algoritmo aplicado a imágenes sintéticas. En este texto se estudia el desempeño en condiciones ideales y en presencia de ruido de un algoritmo de ajuste no lineal para la obtención de parámetros del modelo de Tofts extendido para imágenes de perfusión dinámica. En las pruebas se utiliza como fuente de datos unas imágenes sintéticas formadas a partir de valores conocidos de los parámetros del modelo.
Referencias
Ciudad Platero J, Guirado Llorente D, Sánchez-Reyes Fernández A, Sanjuanbenito Ruiz de Alda W, Velázquez Miranda S. Radiobiología Clínica. SEFM 2003. pp 12-20.
Egeland TA, Gulliksrud K, Gaustad JV, et al. Dynamic contrast-enhanced-MRI of tumor hypoxia. Magn Reson Med 2012;67(2):519–30.
Asenjo B, Navarro F, Arana E, Alberich-Vayarri A. Mapas de perfusión DCE-RM. Fundamentos físicos y aplicaciones clínicas. Madrid: Sociedad Española de Radiología Médica. 2019. ISBN: 978-84-09-12520-3.
Driscoll B, Keller H, Coolens C. Development of a dynamic flow imaging phantom for dynamic contrast-enhanced CT. Med Phys. 2011;38(8):4866-80.
Foltz W, Driscoll B, Lee SL, et al. Phantom Validation of DCE-MRI Magnitude and Phase-Based Vascular Input Function Measurements. Tomography. 2019 Mar;5(1):77–89.
Low L, Ramadan S, Coolens C, et al. 3D printing complex lattice tructures for permeable liver phantom fabrication. Bioprinting. 2018;10:e00025.
Shukla-Dave A, Obuchowski NA, Chenevert TL, et al. Quantitative imaging biomarkers alliance (QIBA) recommendations for improved precision of DWI and DCE-MRI derived biomarkers in multicenter oncology trials. J Magn Reson Imaging. 2019;49(7):e101-e121.
Sourbron SP, Buckley DL. Classic models for dynamic contrast-enhanced MRI. NMR Biomed. 2013 ;26(8):1004-27.
Tofts PS, Brix G, Buckley DL, et al. Estimating kinetic parameters from dynamic contrast‐enhanced T(1)‐weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 1999; 10: 223–32.
R Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/.
Balvay D, Kachenoura N, Espinoza S, et al. Signal-to-Noise Ratio Improvement in Dynamic Contrast-enhanced CT and MR Imaging with Automated Principal Component Analysis Filtering. Radiology. 2011;258(2):435-45
Miles KA, Lee TY, Goh V, et al. Current status and guidelines for the assessment of tumour vascular support with dynamic contrast-enhanced computed tomography. Eur Radiol. 2012; 22:1430–41.
Calamante F, Ahlgren A, van Osch MJ, et al. A novel approach to measure local cerebral haematocrit using MRI. J Cereb Blood Flow Metab. 2016;36(4):768-80.
Schmitz S, Rommel D, Michoux N, et al. Dynamic contrast-enhanced computed tomography to assess early activity of cetuximab in squamous cell carcinoma of the head and neck. Radiol Oncol. 2015;49(1):17-25.
Miyazawa T, Shibata S, Nagai K, et al. Relationship between cerebral blood flow estimated by transcranial Doppler ultrasound and single-photon emission computed tomography in elderly people with dementia. J Appl Physiol (1985). 2018;125(5):1576-84.
Manniessing R, Brune C, van Ginneken B, et al. A 4D CT digital phantom of an individual human brain for perfusion analysis. Peer J. 2016;4:e2683.