Modelo radiómico con PSMA-PET para la discriminación de pacientes con cáncer de próstata de alto riesgo

Autores/as

  • Montserrat Carles Fariña La Fe Health Research Institute, Biomedical Imaging Research Group (GIBI230-PREBI) and Imaging La Fe node at Distributed Network for Biomedical Imaging (ReDIB) Unique Scientific and Technical Infrastructures (ICTS), Valencia, Spain https://orcid.org/0000-0003-2401-8240
  • Constatinos Zamboglou Department of Radiation Oncology, University Medical Center Freiburg, Faculty of Medicine, 79106 Freiburg, Germany
  • Tobias Fechter Department of Radiation Oncology, Division of Medical Physics, University Medical Center Freiburg, Faculty of Medicine, 79106 Freiburg, Germany
  • Selina Kiefer Institute for Surgical Pathology, Medical Center – University of Freiburg, Faculty of Medicine. University of Freiburg, Germany
  • Kathrin Reichel Department of Urology, Medical Center – University of Freiburg, Faculty of Medicine. University of Freiburg, Germany
  • Martin Werner Institute for Surgical Pathology, Medical Center – University of Freiburg, Faculty of Medicine. University of Freiburg, Germany
  • Cordula A Jilg Department of Urology, Medical Center – University of Freiburg, Faculty of Medicine. University of Freiburg, Germany
  • Luis Martí-Bonmatí https://orcid.org/0000-0002-8234-010X
  • Dimos Baltas Department of Radiation Oncology, Division of Medical Physics, University Medical Center Freiburg, Faculty of Medicine, 79106 Freiburg, Germany
  • Michael Mix Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, 79106 Freiburg, Germany
  • Anca L. Grosu Department of Radiation Oncology, University Medical Center Freiburg, Faculty of Medicine, 79106 Freiburg, Germany

DOI:

https://doi.org/10.37004/sefm/2022.23.2.002

Palabras clave:

Cáncer de próstata, PSMA-PET, modelos radiómicos, puntaje Gleason

Resumen

La estimación del puntaje Gleason (PG) en pacientes con cáncer de próstata (PCa) mediante modelos radiómicos es de especial interés por ser una alternativa no invasiva a la biopsia, para estratificar el nivel de riesgo y ayudar en la elección del tratamiento. Nuestro objetivo es estimar el PG mediante un modelo radiómico con imágenes [68Ga]-antígeno de membrana específico de la próstata (PSMA, Prostate Specific Membrane Antigen) de tomografía por emisión de positrones (PET, Positron Emission Tomography). Para la cohorte de entrenamiento (20 pacientes), además de la segmentación manual, se disponía de corregistro histopatológico, que se estableció como segmentación ideal para la confirmación de los resultados. Los modelos radiómicos fueron adicionalmente validados para la segmentación manual en una segunda cohorte (40 pacientes). Se calcularon 133 características radiómicas y primero se evaluó en maniquíes experimentales la dependencia intrínseca con el volumen y con los equipos híbridos de PET y tomografía computarizada (TC) y posteriormente en pacientes, se comparó sus valores dentro y fuera del tumor y la caracterización del PG. Se utilizó la prueba de los rangos con signo de Wilcoxon, la correlación de Spearman y la regresión logística como métodos de análisis. Los resultados mostraron 50 características radiómicas intrínsecamente independientes del volumen y con capacidad para discriminar el tumor independientemente de la segmentación utilizada. El PG se estratificó (PG < 8 vs PG ≥ 8) mediante una característica radiómica con área-bajo-la-curva (AUC, area-under-the-curve) de 0.91/0.84 (cohorte entrenamiento/validación) y con una firma radiómica (AUC de 0.93/0.78). Nuestros resultados avalan la capacidad del modelo radiómico con 68Ga- PSMA-PET para estratificar el PG en PCa.

Referencias

Source: ECIS - European Cancer Information System From https://ecis.jrc.ec.europa.eu © European Union, 2022

Hoeks, C. M., Barentsz, J. O., Hambrock, T. et al. Prostate cancer: Multiparametric MR imaging for detection, localization, and staging. Radiology 2011, 26,46–66, doi:10.1148/radiol.11091822.

Cutaia G, La Tona G, Comelli A, et al. Radiomics and Prostate MRI: Current Role and Future Applications. J Imaging. 2021;7(2):34. Published 2021 Feb 11. doi:10.3390/jimaging7020034

Eiber M, Maurer T, Souvatzoglou M, et al. Evaluation of Hybrid 68Ga-PSMA Ligand PET/CT in 248 Patients with Biochemical Recurrence After Radical Prostatectomy [published correction appears in J Nucl Med. 2016 Aug;57(8):1325]. J Nucl Med. 2015;56(5):668-674.doi:10.2967/jnumed.115.154153

Rhee H, Thomas P, Shepherd B, et al. Prostate Specific Membrane Antigen Positron Emission Tomography May Improve the Diagnostic Accuracy of Multiparametric Magnetic Resonance Imaging in Localized Prostate Cancer. J Urol. 2016;196(4):1261-1267. doi:10.1016/j.juro.2016.02.3000

Berger I, Annabattula C, et al. 68Ga-PSMA PET/CT vs. mpMRI for locoregional prostate cancer staging: correlation with final histopathology. Prostate cancer and prostatic diseases vol. 21,2 (2018): 204-211. doi:10.1038/s41391-018-0048-7

Donato P, Roberts MJ, Morton A, et al. Improved specificity with 68Ga PSMA PET/CT to detect clinically significant lesions "invisible" on multiparametric MRI of the prostate: a single institution comparative analysis with radical prostatectomy histology. Eur J Nucl Med Mol Imaging vol. 46,1 (2019): 20-30. doi:10.1007/s00259-018-4160-7

Epstein JI, Allsbrook WC Jr, Amin MB, Egevad LL; ISUP Grading Committee. The 2005 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma. Am J Surg Pathol. 2005;29(9):1228-1242. doi:10.1097/01.pas.0000173646.99337.b1

Fehr D, Veeraraghavan H, Wibmer A, et al. Automatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance images. Proc. Natl. Acad. Sci. USA 2015, 112, 6265–6273, doi:10.1073/pnas.1505935112.52

Cuocolo R, Stanzione A, et al. Clinically significant prostate cancer detection on MRI: A radiomic shape features study. Eur. J. Radiol. 2019, 116, 144–149,doi:10.1016/j.ejrad.2019.05.006.

Rahbar K, Weckesser M, Huss S, et al. Correlation of Intraprostatic Tumor Extent with 68Ga-PSMA Distribution in Patients with Prostate Cancer. J Nucl Med. 2016;57(4):563-567. doi:10.2967/jnumed.115.169243

Hoffmann MA, Miederer M, Wieler HJ, Ruf C, Jakobs FM, Schreckenberger M. Diagnostic performance of (68) Gallium-PSMA-11 PET/CT to detect significant prostate cancer and comparison with (FEC)-F-18 PET/CT. Oncotarget. 2017; 8: 111073-83.

Zamboglou C, Carles M, Fechter T, et al. Radiomic features from PSMA PET for non-invasive intraprostatic tumor discrimination and characterization in patients with intermediate and high-risk prostate cancer - a comparison study with histology reference. Theranostics. 2019;9(9):2595-2605. Published 2019 Apr 13. doi:10.7150/thno.32376

Surti S, Kuhn A, Werner ME, Perkins AE, Kolthammer J, Karp JS. Performance of Philips Gemini TF PET/CT scanner with special consideration for its time-of-flight imaging capabilities. J Nucl Med. 2007;48(3):471–80.

Rausch I, Ruiz A, Valverde-Pascual I, Cal-González J, Beyer T, Carrio I. Performance Evaluation of the Vereos PET/CT System According to the NEMA NU2-2012 Standard. J Nuc Med. 2019;60(4):561–7. https://doi.org/10.2967/jnumed.118.215541. Epub 2018 Oct 25

Zamboglou C, Schiller F, Fechter T, et al. (68)Ga-HBED-CC-PSMA PET/CT Versus Histopathology in Primary Localized Prostate Cancer: A Voxel-Wise Comparison. Theranostics. 2016; 6: 1619-28.

Vallières M, Freeman CR, Skamene SR, El Naqa I. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys Med Biol. 2015; 60: 5471-96.

Vallières M, Zwanenburg A, Badic B, Cheze Le Rest C, Visvikis D, Hatt M. Responsible Radiomics Research for Faster Clinical Translation. J Nucl Med. 2018;59(2):189-193. doi:10.2967/jnumed.117.200501

Carles M, Bach T, Torres-Espallardo I, Baltas D, Nestle U, Martí-Bonmatí L. Significance of the impact of motion compensation on the variability of PET image features. Phys Med Biol. 2018; 63: 065013

Benjamini Y, Hochberg Y. Controlling the False Discovery Rate - a Practical and Powerful Approach to Multiple Testing. J R Stat Soc Series B Stat Methodol. 1995; 57: 289-300.

Zamboglou C, Fassbender TF, Steffan L, et al. Validation of different PSMA-PET/CT-based contouring techniques for intraprostatic tumor definition using histopathology as standard of reference. Radiother Oncol. 2019;141:208-213. doi:10.1016/j.radonc.2019.07.002.

Sue M. Evans, Varuni Patabendi Bandarage, Caroline Kronborg, Arul Earnest, Jeremy Millar, David Clouston, Gleason group concordance between biopsy and radical prostatectomy specimens: A cohort study from Prostate Cancer Outcome Registry – Victoria, Prostate International, 2016, 4(4): 145-151. doi.org/10.1016/j.prnil.2016.07.004.

Pfaehler E, van Sluis J, Merema BBJ, van Ooijen P, Berendsen RCM, van Velden FHP, Boellaard R. Experimental Multicenter and Multivendor Evaluation of the Performance of PET Radiomic Features Using 3-Dimensionally Printed Phantom Inserts. J Nucl Med. 2020 Mar;61(3):469-476. doi: 10.2967/jnumed.119.229724. Epub 2019 Aug 16. PMID: 31420497; PMCID: PMC7067530.

Jha, A.K., Mithun, S., Jaiswar, V. et al. Repeatability and reproducibility study of radiomic features on a phantom and human cohort. Sci Rep 11, 2055 (2021). https://doi.org/10.1038/s41598-021-81526-8

Carles, M., Fechter, T., Martí-Bonmatí, L. et al. Experimental phantom evaluation to identify robust positron emission tomography (PET) radiomic features. EJNMMI Phys 8, 46 (2021). https://doi.org/10.1186/s40658-021-00390-7

Carles M, Bach T, Torres-Espallardo I, Baltas D, Nestle U, Martí-Bonmatí L. Significance of the impact of motion compensation on the variability of PET image features. Phys Med Biol. 2018;63(6):065013. https://doi.org/10.1088/1361-6560/aab180

Zamboglou C, Drendel V, Jilg CA, et al. Comparison of 68Ga-HBED-CC PSMA-PET/CT and multiparametric MRI for gross tumour volume detection in patients with primary prostate cancer based on slice-by-slice comparison with histopathology. Theranostics. 2017;7(1):228-237. Published 2017 Jan 1. doi:10.7150/thno.16638.

Descargas

Publicado

2022-11-15

Número

Sección

Artículos científicos

Cómo citar

Modelo radiómico con PSMA-PET para la discriminación de pacientes con cáncer de próstata de alto riesgo. (2022). Revista De Física Médica, 23(2), 21-37. https://doi.org/10.37004/sefm/2022.23.2.002

Artículos similares

221-230 de 230

También puede Iniciar una búsqueda de similitud avanzada para este artículo.