Comparativa de diferentes modelos radiómicos para la clasificación de lesiones adrenales indeterminadas diagnosticadas de forma incidental en TC con contraste

Autores/as

  • Daniel Prieto Moran Servicio de Radiofísica. Hospital Universitario Ramón y Cajal. Madrid https://orcid.org/0000-0002-7289-730X
  • Miguel Ángel Gómez Bermejo Servicio de Radiodiagnóstico. Hospital Universitario Ramón y Cajal. Madrid
  • Elena Canales Lachen Servicio de Radiodiagnóstico. Hospital Universitario Ramón y Cajal. Madrid https://orcid.org/0000-0003-3530-6504
  • Ernesto García Santana Servicio de Radiodiagnóstico. Hospital Universitario Insular de Gran Canaria. Las Palmas de Gran Canaria https://orcid.org/0000-0002-2072-7018
  • Raquel García Latorre Servicio de Radiodiagnóstico. Hospital Universitario Ramón y Cajal. Madrid https://orcid.org/0000-0002-9649-2892
  • Miguel Cámara Gallego Servicio de Radiofísica. Hospital Universitario Ramón y Cajal. Madrid https://orcid.org/0000-0002-1511-1518
  • Rafael Colmenares Fernández Servicio de Radiofísica. Hospital Universitario Ramón y Cajal. Madrid https://orcid.org/0000-0002-2964-3013
  • Ana Belén Capuz Suárez Servicio de Radiofísica. Hospital Universitario Ramón y Cajal. Madrid
  • María José Béjar Navarro Servicio de Radiofísica. Hospital Universitario Ramón y Cajal. Madrid https://orcid.org/0000-0003-3909-1926
  • Juan David García Fuentes Servicio de Radiofísica. Hospital Universitario Ramón y Cajal. Madrid https://orcid.org/0000-0003-1725-1888
  • David Sevillano Martinez Servicio de Radiofísica. Hospital Universitario Ramón y Cajal. Madrid https://orcid.org/0000-0003-0156-875X
  • Rafael Morís Pablos Servicio de Radiofísica. Hospital Universitario Ramón y Cajal. Madrid https://orcid.org/0009-0009-6800-5223
  • Javier Blázquez Sanchez Servicio de Radiodiagnóstico. Hospital Universitario Ramón y Cajal. Madrid https://orcid.org/0000-0002-2693-6478
  • Feliciano García Vicente Servicio de Radiofísica. Hospital Universitario Ramón y Cajal. Madrid https://orcid.org/0000-0001-6708-5449

DOI:

https://doi.org/10.37004/sefm/2024.25.2.001

Palabras clave:

radiómica, Inteligencia Artificial, LifeX, adenoma, incidentalomas, suprarrenal

Resumen

Objetivo: Se realiza una comparativa de diferentes modelos de aprendizaje automático para discriminar incidentalomas suprarrenales mediante estudios de TC.

Métodos: Se obtuvieron 62 características radiómicas diferentes a partir de una muestra de 61 incidentalomas indeterminados utilizando el software de licencia libre LIFEx. Se realizaron 19 modelos predictivos empleando además diversos métodos de selección de características para optimizar la detección de lesiones malignas. Para todos ellos se evaluaron cuatro métodos de validación cruzada. El contorneado de los adenomas fue realizado por duplicado por 4 radiólogos.

Resultados: Se obtienen los valores del área bajo la curva ROC entre 0,42 (0,09-0,81) y 0,92 (0,63-1,00), y exactitud de los modelos entre 0,63 (0,43-0,79) y 0,94 (0,82-1,00). El modelo de mejor rendimiento fue la regresión logística balanceada entrenado con 14 características con un coeficiente intraclase superior a 0,9, con el que se obtuvo una exactitud de 0,94 (0,74-1,00), un AUC ROC de 0,917 (0,63-1,00), una sensibilidad de 0,92 (0,65-1,00) y especificidad de 1,00 (0,71-1,00)

Conclusiones: La evaluación, comparación y validación de diferentes modelos predictivos basados en características radiómicas nos ha permitido obtener un modelo optimizado para la detección de tumores adrenales malignos entre los incidentalomas diagnosticados de forma incidental en TC con contraste.

Referencias

1. Saruta T, Suzuki H, Shibata H. Adrenal incidentaloma. Nippon Naibunpi Gakkai zasshi 1993; 69(5): 509–519. https://doi.org/10.1507/endocrine1927.69.5_509

2. Mayo-Smith WW, Song JH, Boland GL, et al. Management of Incidental Adrenal Masses: A White Paper of the ACR Incidental Findings Committee. J. Am. Coll. Radiol. 2017; 14(8): 1038–1044. http://dx.doi.org/10.1016/j.jacr.2017.05.001

3. Terzolo M, Stigliano A, Chiodini I, et al. AME position statement on adrenal incidentaloma. Eur. J. Endocrinol. 2011; 164(6): 851–870. https://doi.org/10.1530/EJE-10-1147

4. Cawood TJ, Hunt PJ, O’Shea D, Cole D, Soule S. Recommended evaluation of adrenal incidentalomas is costly, has high false-positive rates and confers a risk of fatal cancer that is similar to the risk of the adrenal lesion becoming malignant; time for a rethink? Eur. J. Endocrinol. 2009; 161(4): 513–527. https://doi.org/10.1530/EJE-09-0234

5. Welch HG, Black WC. Overdiagnosis in cancer. J. Natl. Cancer Inst. 2010; 102(9): 605–613. https://doi.org/10.1093/jnci/djq099

6. Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images are more than pictures, they are data. Radiology 2016; 278(2): 563–577. https://doi.org/10.1148/radiol.2015151169

7. Larue RTHM, Defraene G, De Ruysscher D, Lambin P, Van Elmpt W. Quantitative radiomics studies for tissue characterization: A review of technology and methodological procedures. Br. J. Radiol. 2017; 90(1070). https://doi.org/10.1259/bjr.20160665

8. Ligero M, Jordi-Ollero O, Bernatowicz K, et al. Minimizing acquisition-related radiomics variability by image resampling and batch effect correction to allow for large-scale data analysis. Eur. Radiol. 2021; 31(3): 1460–1470. https://doi.org/10.1007/s00330-020-07174-0

9. Nioche C, Orlhac F, Boughdad S, et al. Lifex: A freeware for radiomic feature calculation in multimodality imaging to accelerate advances in the characterization of tumor heterogeneity. Cancer Res. 2018; 78(16): 4786–4789. https://doi.org/10.1158/0008-5472.CAN-18-0125

10. Nioche C, Orlhac F, Buvat I. Texture — User Guide Local Image Features Extraction. https://www.lifexsoft.org/images/phocagallery/documentation/ProtocolTexture/UserGuide/TextureUserGuide.pdf (2023).

11. Carrasco JL, Jover L. Estimating the Generalized Concordance Correlation Coefficient through Variance Components. Biometrics 2003; 59(4): 849–858. https://doi.org/10.1111/j.0006-341X.2003.00099.x

12. Lahey MA, Downey RG, Saal FE. Intraclass correlations: There’s more there than meets the eye. Psychol. Bull. 1983; 93(3): 586–595. https://doi.org/10.1037/0033-2909.93.3.586

13. Raju VNG, Lakshmi KP, Jain VM, Kalidindi A, Padma V. Study the Influence of Normalization/Transformation process on the Accuracy of Supervised Classification. Proc. 3rd Int. Conf. Smart Syst. Inven. Technol. ICSSIT 2020 2020; (Icssit): 729–735. https://doi.org/10.1109/ICSSIT48917.2020.9214160

14. Peeken JC, Shouman MA, Kroenke M, et al. A CT-based radiomics model to detect prostate cancer lymph node metastases in PSMA radioguided surgery patients. Eur. J. Nucl. Med. Mol. Imaging 2020; 47(13): 2968–2977. https://doi.org/10.1007/s00259-020-04864-1

15. Zhang H, Li Z, Shahriar H, Tao L, Bhattacharya P, Qian Y. Improving prediction accuracy for logistic regression on imbalanced datasets. Proc. - Int. Comput. Softw. Appl. Conf. 2019; 1: 918–919. https://doi.org/10.1109/COMPSAC.2019.00140

16. Zhou CY, Chen YQ. Improving nearest neighbor classification with cam weighted distance. Pattern Recognit. 2006; 39(4): 635–645. https://doi.org/10.1016/j.patcog.2005.09.004

17. Quinlan JR. Induction of decision trees. Mach. Learn. 1986; 1(1): 81–106. https://doi.org/10.1007/bf00116251

18. Jin Z, Shang J, Zhu Q, Ling C, Xie W, Qiang B. RFRSF: Employee Turnover Prediction Based on Random Forests and Survival Analysis. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 2020; 12343 LNCS: 503–515. https://doi.org/10.1007/978-3-030-62008-0_35

19. de Jesus FM, Yin Y, Mantzorou-Kyriaki E, et al. Machine learning in the differentiation of follicular lymphoma from diffuse large B-cell lymphoma with radiomic [18F]FDG PET/CT features. Eur. J. Nucl. Med. Mol. Imaging 2022; 49(5): 1535–1543. https://doi.org/10.1007/s00259-021-05626-3

20. Masters T. Multilayer Feedforward Networks. Pract. Neural Netw. Recipies C++ 1993; 77–116.

21. Seiffert C, Khoshgoftaar TM, Van Hulse J, Napolitano A. RUSBoost: A hybrid approach to alleviating class imbalance. IEEE Trans. Syst. Man, Cybern. Part ASystems Humans 2010; 40(1): 185–197. https://doi.org/10.1109/TSMCA.2009.2029559

22. Martínez-García JM, Suárez-Araujo CP, Báez PG. SNEOM: A sanger network based extended over-sampling method. Application to imbalanced biomedical datasets. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 2012; 7666 LNCS(PART 4): 584–592. https://doi.org/10.1007/978-3-642-34478-7_71

23. Sharma N V., Yadav NS. An optimal intrusion detection system using recursive feature elimination and ensemble of classifiers. Microprocess. Microsyst. 2021; 85(June): 104293. https://doi.org/10.1016/j.micpro.2021.104293

24. Hasan KA, Hasan MAM. Prediction of Clinical Risk Factors of Diabetes Using Multiple Machine Learning Techniques Resolving Class Imbalance. ICCIT 2020 - 23rd Int. Conf. Comput. Inf. Technol. Proc. 2020; (December). https://doi.org/10.1109/ICCIT51783.2020.9392694

25. Ding H, Feng PM, Chen W, Lin H. Identification of bacteriophage virion proteins by the ANOVA feature selection and analysis. Mol. Biosyst. 2014; 10(8): 2229–2235. https://doi.org/10.1039/c4mb00316k

26. Berrar D. Cross-validation. Encycl. Bioinforma. Comput. Biol. ABC Bioinforma. 2018; 1–3(January 2018): 542–545. https://doi.org/10.1016/B978-0-12-809633-8.20349-X

27. Risk C, James PMA. Optimal Cross-Validation Strategies for Selection of Spatial Interpolation Models for the Canadian Forest Fire Weather Index System. Earth Sp. Sci. 2022; 9(2): 1–17. https://doi.org/10.1029/2021EA002019

28. Liu X, Lu J, Zhang G, et al. A machine learning approach yields a multiparameter prognostic marker in liver cancer. Cancer Immunol. Res. 2021; 9(3): 337–347. https://doi.org/10.1158/2326-6066.CIR-20-0616

29. Harrigan MP, Sultan MM, Hernández CX, et al. MSMBuilder: Statistical Models for Biomolecular Dynamics. Biophys. J. 2017; 112(1): 10–15. https://doi.org/10.1016/j.bpj.2016.10.042

30. Raschka S. Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning. 2018; http://arxiv.org/abs/1811.12808

31. Crimì F, Quaia E, Cabrelle G, et al. Diagnostic Accuracy of CT Texture Analysis in Adrenal Masses: A Systematic Review. Int. J. Mol. Sci. 2022; 23(2). https://doi.org/10.3390/ijms23020637

32. Elmohr MM, Fuentes D, Habra MA, et al. Machine learning-based texture analysis for differentiation of large adrenal cortical tumours on CT. Clin. Radiol. 2019; 74(10): 818.e1-818.e7. http://dx.doi.org/10.1016/j.crad.2019.06.021

33. Lisa M. Ho, Ehsan Samei, Maciej A. Mazurowski, Yuese Zheng, Brian C. Allen, Rendon C. Nelson and DM. Can Texture Analysis Be Used to Distinguish Benign From Malignant Adrenal Nodules on Unenhanced CT, Contrast-Enhanced CT, or In- Phase and Opposed-Phase MRI? Am. J. Roentgenol. 2019; 212:3(March): 554–561. https://doi.org/10.2214/AJR.18.20097

34. Sun PAN, Wang D, Mok VCT, Shi LIN. Comparison of Feature Selection Methods and Machine Learning Classifiers for Radiomics Analysis in Glioma Grading. 2019; 7.

35. Ni M, Wang L, Yu H, et al. Radiomics Approaches for Predicting Liver Fibrosis With Nonenhanced T 1 -Weighted Imaging : Comparison of Different Radiomics Models. 2021; https://doi.org/10.1002/jmri.27391

36. Prinzi F, Currieri T, Gaglio S, Vitabile S. Shallow and deep learning classifiers in medical image analysis. Eur. Radiol. Exp. 2024; 2. https://doi.org/10.1186/s41747-024-00428-2

37. Naseri H, Skamene S, Tolba M, et al. Radiomics ‑ based machine learning models to distinguish between metastatic and healthy bone using lesion ‑ center ‑ based geometric regions of interest. Sci. Rep. 2022; 1–13. https://doi.org/10.1038/s41598-022-13379-8

38. Decoux A, Duron L, Habert P, et al. Comparative performances of machine learning algorithms in radiomics and impacting factors. Sci. Rep. 2023; 1–10. https://doi.org/10.1038/s41598-023-39738-7

39. Parmar C, Grossmann P, Bussink J, Lambin P, Aerts HJWL. Machine Learning methods for Quantitative Radiomic Biomarkers. Nat. Publ. Gr. n.d.; 1–11. https://doi.org/10.1038/srep13087

40. Shao S, Zheng N, Mao N, et al. A triple-classi fi cation radiomics model for the differentiation of pleomorphic adenoma, Warthin tumour , and malignant salivary gland tumours on the basis of diffusion-weighted imaging. Clin. Radiol. 2021; 76(6): 472.e11-472.e18. http://dx.doi.org/10.1016/j.crad.2020.10.019

41. Qi S, Zuo Y, Chang R, Huang K, Liu J, Zhang Z. Using CT radiomic features based on machine learning models to subtype adrenal adenoma. 2023; 1–12. https://doi.org/10.1186/s12885-023-10562-6

42. Zheng Y, Liu X, Zhong Y, Lv F, Yang H. A Preliminary Study for Distinguish Hormone-Secreting Functional Adrenocortical Adenoma Subtypes Using Multiparametric CT Radiomics-Based Machine Learning Model and Nomogram. Front. Oncol. 2020; 10(September): 1–11. https://doi.org/10.3389/fonc.2020.570502

43. Winkelmann MT, Gassenmaier S, Walter SS, et al. Differentiation of adrenal adenomas from adrenal metastases in single-phased staging dual-energy CT and radiomics. Diagnostic Interv. Radiol. 2022; 28(3): 208–216. https://doi.org/10.5152/dir.2022.21691

Descargas

Publicado

2024-11-04

Número

Sección

Artículos científicos

Cómo citar

Comparativa de diferentes modelos radiómicos para la clasificación de lesiones adrenales indeterminadas diagnosticadas de forma incidental en TC con contraste. (2024). Revista De Física Médica, 25(2), 11-23. https://doi.org/10.37004/sefm/2024.25.2.001