Guía para el control de calidad y seguridad en aceleradores lineales de uso clínico

Autores/as

  • Françoise Lliso Valverde Unidad de Radiofísica, Servicio de Oncología Radioterápica. Hospital Universitari i Politécnic La Fe, Valencia.
  • Manuel Vilches Pacheco Servicio de Radiofísica y Protección Radiológica. Centro Médico de Asturias, Oviedo.
  • Miguel Martínez Albaladejo Servicio de Radiofísica. Hospital General Universitario Santa Lucía, Cartagena.
  • Pedro Almendral Manzano Servicio de Radiofísica. Hospital Universitario de Badajoz, Badajoz.
  • Eva Ambroa Rey Unidad de Radiofísica. Consorci Sanitari de Terrasa (CST), Terrassa, Barcelona.
  • Carlos Luis Ferrer Gracia Servicio de Radiofísica. Hospital Universitario La Paz, Madrid.
  • Jaime Pérez-Alija Fernández Servei de Radiofísica. Hospital de la Santa Creu i Sant Pau, Barcelona.
  • Ricardo Tortosa Oliver Servicio de Radiofísica. Hospital IMED, Elche. Servicio de Radiofísica. Hospital Francesc Borja, Gandía.

DOI:

https://doi.org/10.37004/sefm/2024.25.1.007

Palabras clave:

Radioterapia, acelerador lineal, control de calidad, análisis de riesgos, control estadístico de procesos

Resumen

El objetivo principal de este documento es constituir una guía para el diseño del programa de control de calidad en aceleradores lineales (CCAL) con montaje isocéntrico que incorpore los enfoques del control estadístico de procesos (CEP) y del análisis de riesgos. A  lo largo del texto se hace hincapié en que la guía no es prescriptiva y se anima a adaptarla a las necesidades específicas de cada centro.

Se presenta una breve descripción de las pruebas recomendadas. Se sugiere un conjunto de pruebas fundamentales y otras complementarias a las que se ha llegado teniendo en cuenta los resultados extraídos de una encuesta a los socios de la SEFM, así  como las propuestas de otras sociedades científicas, los comentarios de los fabricantes, y el consenso de este grupo de trabajo. Se  proporcionan recomendaciones de frecuencias y tolerancias para aceleradores representativos a título orientativo.

En los apéndices se abordan aspectos funcionales del acelerador lineal y su relación con las pruebas fundamentales del programa de  CCAL y se proporciona un ejemplo práctico de CEP aplicado a la variable dosis absorbida por unidad de monitor. Asimismo, se insta a los fabricantes, proveedores de material dosimétrico y gestores a utilizar la guía como referencia para colaborar en el mantenimiento de los equipos al nivel óptimo de calidad y seguridad requeridos.

Citas

Pinza C, Lliso F. Control de calidad en aceleradores lineales de uso clínico; 2009.

Huq MS, Fraass BA, Dunscombe PB, et al. The report of Task Group 100 of the AAPM: Application of risk analysis methods to radiation therapy quality management. Med Phys. 2016;43(7):4209-4262. https://doi.org/10.1118/1.4947547

Klein EE, Hanley J, Bayouth J, et al. Task Group 142 report: Quality assurance of medical accelerators. Med Phys. 2009;36(9Part1):4197-4212. https://doi.org/10.1118/1.3190392

Kutcher GJ, Coia L, Gillin M, et al. Comprehensive QA for radiation oncology: Report of AAPM Radiation Therapy Committee Task Group 40. Med Phys. 1994;21(4):581-618. https://doi.org/10.1118/1.597316

Smith K, Balter P, Duhon J, et al. AAPM Medical Physics Practice Guideline 8.a.: Linear accelerator performance tests. J Appl Clin Med Phys. 2017;18(4):23-39. https://doi.org/10.1002/acm2.12080

Krauss RF, Balik S, Cirino ET, et al. AAPM Medical Physics Practice Guideline 8.b: Linear accelerator performance tests. J Appl Clin Med Phys. Published online 2023:e14160-92. https://doi.org/10.1002/acm2.14160

Hanley J, Dresser S, Simon W, et al. AAPM Task Group 198 Report: An implementation guide for TG 142 quality assurance of medical accelerators. Med Phys. 2021;48(10):e830-e885. https://doi.org/10.1002/mp.14992

Kirkby C, Ghasroddashti E, Angers CP, Zeng G, Barnett E. COMP report: CPQR technical quality control guideline for medical linear accelerators and multileaf collimators. J Appl Clin Med Phys. 2018;19(2):22-28. https://doi.org/10.1002/acm2.12236

Patel I. Physics Aspects of Quality Control in Radiotherapy Report 81. En: IPEM Report 81, 2nd edition; 2018.

SGSMP. Rec no 11: Quality Control of Medical Electron Accelerators; 2014.

Mans A, Schuring D, Arends MP, et al. NCS report 24: Code of practice for the quality assurance and control for volumetric modulated arc therapy. Phys Med Biol. 2016;61(19):7221-7235. https://doi.org/10.1088/0031-9155/61/19/7221

Dumas J-L, Auzac G, Brune K, Legrand C, Llagostera C. Rapport S.F.M.P. no34: Assurance qualité en radiothérapie par modulation d’intensité rotationnelle; 2018.

Bonfantini F, Giandini T, Meroni S, et al. Application of failure mode and effects analysis to optimization of linac quality controls protocol. Med Phys. 2019;46(6):2541-2555. https://doi.org/10.1002/mp.13538

O’Daniel JC, Yin FF. Quantitative Approach to Failure Mode and Effect Analysis for Linear Accelerator Quality Assurance. Int J Radiat Oncol Biol Phys. 2017;98(1):56-62. https://doi.org/10.1016/j.ijrobp.2017.01.035

Pawlicki T, Whitaker M, Boyer AL. Statistical process control for radiotherapy quality assurance. Med Phys. 2005;32(9):2777-2786. https://doi.org/10.1118/1.2001209

Binny D, Aland T, Archibald‐Heeren BR, Trapp J V., Kairn T, Crowe SB. A multi‐institutional evaluation of machine performance check system on treatment beam output and symmetry using statistical process control. J Appl Clin Med Phys. 2019;20(3):71-80. https://doi.org/10.1002/acm2.12547

Binny D, Lancaster CM, Byrne M, Kairn T, V. Trapp J, Crowe SB. Tomotherapy treatment site specific planning using statistical process control. Phys Medica. 2018;53:32-39. https://doi.org/10.1016/j.ejmp.2018.08.003

Létourneau D, Wang A, Amin MN, et al. Multileaf collimator performance monitoring and improvement using semiautomated quality control testing and statistical process control. Med Phys. 2014;41(12):121713. https://doi.org/10.1118/1.4901520

Barfield G, Burton EW, Stoddart J, Metwaly M, Cawley MG. Quality assurance of gating response times for surface guided motion management treatment delivery using an electronic portal imaging detector. Phys Med Biol. 2019;64(12):125023. https://doi.org/10.1088/1361-6560/ab205a

Sanghangthum T, Suriyapee S, Srisatit S, Pawlicki T. Retrospective analysis of linear accelerator output constancy checks using process control techniques. J Appl Clin Med Phys. 2013;14(1):147-160. https://doi.org/10.1120/jacmp.v14i1.4032

Breen SL, Moseley DJ, Zhang B, Sharpe MB. Statistical process control for IMRT dosimetric verification. Med Phys. 2008;35(10):4417-4425. https://doi.org/10.1118/1.2975144

Moore SJ, Herst PM, Louwe RJW. Review of the patient positioning reproducibility in head-and-neck radiotherapy using Statistical Process Control. Radiother Oncol. 2018;127(2):183-189. https://doi.org/10.1016/j.radonc.2018.01.006

Lowther NJ, Hamilton DA, Kim H, Evans JM, Marsh SH, Louwe RJW. Monitoring anatomical changes of individual patients using statistical process control during head-and-neck radiotherapy. Phys Imaging Radiat Oncol. 2019;9:21-27. https://doi.org/10.1016/j.phro.2018.12.004

Gérard K, Grandhaye J, Marchesi V, Kafrouni H, Husson F, Aletti P. A comprehensive analysis of the IMRT dose delivery process using statistical process control (SPC). Med Phys. 2009;36(4):1275-1285. https://doi.org/10.1118/1.3089793

Gao S, Balter PA, Rose M, Simon WE. A comparison of methods for monitoring photon beam energy constancy. J Appl Clin Med Phys. 2016;17(6):242-253. https://doi.org/10.1120/jacmp.v17i6.6454

Gao S, Chetvertkov MA, Cai B, et al. Beam energy metrics for the acceptance and quality assurance of Halcyon linear accelerator. J Appl Clin Med Phys. 2021;22(7):121-127. https://doi.org/10.1002/acm2.13281

Létourneau D, Keller H, Becker N, Amin MN, Norrlinger B, Jaffray DA. Quality control methods for linear accelerator radiation and mechanical axes alignment. Med Phys. 2018;45(6):2388-2398. https://doi.org/10.1002/mp.12910

Afzalifar A, Mowlavi AA, Mohammadi M. Performance of a linear accelerator couch positioning quality control task using an electronic portal imaging device. Radiol Phys Technol. 2020;13(2):195-200. https://doi.org/10.1007/s12194-020-00557-4

Goodall S, Harding N, Simpson J, Alexander L, Morgan S. Clinical implementation of photon beam flatness measurements to verify beam quality. J Appl Clin Med Phys. 2015;16(6):340-345. https://doi.org/10.1120/jacmp.v16i6.5752

Fogliata A, Garcia R, Knöös T, et al. Definition of parameters for quality assurance of flattening filter free (FFF) photon beams in radiation therapy. Med Phys. 2012;39(10):6455-6464. https://doi.org/10.1118/1.4754799

Fogliata A, Fleckenstein J, Schneider F, et al. Flattening filter free beams from TrueBeam and Versa HD units: Evaluation of the parameters for quality assurance. Med Phys. 2015;43(1):205-212. https://doi.org/10.1118/1.4938060

Das IJ, Cheng C, Watts RJ, et al. Accelerator beam data commissioning equipment and procedures: Report of the TG-106 of the Therapy Physics Committee of the AAPM. Med Phys. 2008;35(9):4186-4215. https://doi.org/10.1118/1.2969070

Dieterich S, Cavedon C, Chuang CF, et al. Report of AAPM TG 135: Quality assurance for robotic radiosurgery. Med Phys. 2011;38(6Part1):2914-2936. https://doi.org/10.1118/1.3579139

Vandervoort E, Patrocinio H, Chow T, Soisson E, Nadeau DB. COMP Report: CPQR technical quality control guidelines for CyberKnife ® Technology. J Appl Clin Med Phys. 2018;19(2):29-34. https://doi.org/10.1002/acm2.12263

Langen KM, Papanikolaou N, Balog J, et al. QA for helical tomotherapy: Report of the AAPM Task Group 148a). Med Phys. 2010;37(9):4817-4853. https://doi.org/10.1118/1.3462971

V. Althof, Ost B De, Reynaert N, Schubert K, Sterpin E, Kamer JB van de. NCS Report 27: Quality Assurance for Tomotherapy Systems; 2017.

Roberts DA, Sandin C, Vesanen PT, et al. Machine QA for the Elekta Unity system: A Report from the Elekta MR-linac consortium. Med Phys. 2021;48(5):e67-e85. https://doi.org/10.1002/mp.14764

Lizuain Arroyo M, Capuz Suárez A, Delgado Rodríguez J, et al. Recomendaciones para el control de calidad de equipos y técnicas de radioterapia guiada por la imagen (IGRT); 2013.

Remeijer P, Deurloo K, Eenink M, et al. NCS Report 32: Quality assurance of cone-beam CT; 2019. https://doi.org/10.25030/ncs-032

McCullough SP, Alkhatib H, Antes KJ, et al. AAPM Medical Physicis Practice Guideline 2.b.: Commissioning and quality assurance of X‐ray‐based image‐guided radiotherapy systems. J Appl Clin Med Phys. 2021;22(9):73-81. https://doi.org/10.1002/acm2.13346

O’Daniel JC, Giles W, Cui Y, Adamson J. A structured FMEA approach to optimizing combinations of plan‐specific quality assurance techniques for IMRT and VMAT QA. Med Phys. 2023;50(9):5387-5397. https://doi.org/10.1002/mp.16630

Martínez Albaladejo M, Vilches Pacheco M, Almendral Manzano P, et al. Diseño y resultados de la encuesta sobre control de calidad de aceleradores lineales. Rev Física Médica. 2023;24(1):63-87. https://doi.org/10.37004/sefm/2023.24.1.005

Proyecto MARR (Matrices de riesgo en radioterapia). Published online 2016. http://www.sefm.es/new/download/1.-MARR-Documento-MARR.pdf

Bayart D. Walter Andrew Shewhart, Economic control of quality of manufactured product (1931). En: Landmark Writings in Western Mathematics 1640-1940. Elsevier; 2005:926-935. https://doi.org/10.1016/B978-044450871-3/50153-4

Raveendran V, R GR, Anjana PT, Bhasi S, Ranjith CP. Physica Medica Moving towards process-based radiotherapy quality assurance using statistical process control. Phys Medica. 2023;112:102651. https://doi.org/10.1016/j.ejmp.2023.102651

Miften M, Olch A, Mihailidis D, et al. Tolerance limits and methodologies for IMRT measurement‐based verification QA: Recommendations of AAPM Task Group No. 218. Med Phys. 2018;45(4):e53-e83. https://doi.org/10.1002/mp.12810

Oakland JO and R. Statistical Process Control. Seventh ed. (Oakland RJ, ed.). Taylor & Francis; 2019.

Ziegel E,Wheeler D CD. Understanding Statistical Process Control. Technometrics. 1993;35(1):101-102. https://doi.org/10.1080/00401706.1993.10485025

Besterfield DH. Quality Control. Prentice Hall; 1990.

López-Tarjuelo J, Luquero-Llopis N, García-Mollá R, et al. Statistical process control for electron beam monitoring. Phys Medica. 2015;31(5):493-500. https://doi.org/10.1016/j.ejmp.2015.05.006

de la Vega JM, Martínez-Luna RJ, Guirado D, Vilches M, Lallena AM. Statistical control of the spectral quality index in electron beams. Radiother Oncol. 2012;102(3):406-411. https://doi.org/10.1016/j.radonc.2011.08.010

Nordström F, af Wetterstedt S, Johnsson S, Ceberg C, Bäck SÅJ. Control chart analysis of data from a multicenter monitor unit verification study. Radiother Oncol. 2012;102(3):364-370. https://doi.org/10.1016/j.radonc.2011.11.016

Pawlicki T, Yoo S, Court LE, et al. Process control analysis of IMRT QA: implications for clinical trials. Phys Med Biol. 2008;53(18):5193-5205. https://doi.org/10.1088/0031-9155/53/18/023

Zhang H, Lu W, Cui H, Li Y, Yi X. Assessment of Statistical Process Control Based DVH Action Levels for Systematic Multi-Leaf Collimator Errors in Cervical Cancer RapidArc Plans. Front Oncol. 2022;12. https://doi.org/10.3389/fonc.2022.862635

Xiao Q, Bai S, Li G, et al. Statistical process control and process capability analysis for non‐normal volumetric modulated arc therapy patient‐specific quality assurance processes. Med Phys. 2020;47(10):4694-4702. https://doi.org/10.1002/mp.14399

Bellec J, Delaby N, Jouyaux F, et al. Plan delivery quality assurance for CyberKnife: Statistical process control analysis of 350 film-based patient-specific QAs. Phys Medica. 2017;39:50-58. https://doi.org/10.1016/j.ejmp.2017.06.016

Wang H, Xue J, Chen T, et al. Adaptive radiotherapy based on statistical process control for oropharyngeal cancer. J Appl Clin Med Phys. 2020;21(9):171-177. https://doi.org/10.1002/acm2.12993

Lowther NJ, Hamilton DA, Kim H, Evans JM, Marsh SH, Louwe RJW. Monitoring anatomical changes of individual patients using statistical process control during head-and-neck radiotherapy. Phys Imaging Radiat Oncol. 2019;9:21-27. https://doi.org/10.1016/j.phro.2018.12.004

Govindarajan R, Llueguera E, Melero A, et al. El control estadístico de proceso puede ayudar a prevenir los errores de tratamiento sin aumentar los costes en radioterapia. Rev Calid Asist. 2010;25(5):281-290. https://doi.org/10.1016/j.cali.2010.04.004

Fuangrod T, Greer PB, Simpson J, Zwan BJ, Middleton RH. A method for evaluating treatment quality using in vivo EPID dosimetry and statistical process control in radiation therapy. Int J Health Care Qual Assur. 2017;30(2):90-102. https://doi.org/10.1108/IJHCQA-03-2016-0028

Meyers SM, Balderson MJ, Létourneau D. Evaluation of Elekta Agility multi-leaf collimator performance using statistical process control tools. J Appl Clin Med Phys. 2019;20(7):100-108. https://doi.org/10.1002/acm2.12660

De la Vega JM, Ruiz-Arrebola S, Tornero-López AM, et al. A method to relate StarTrack® measurements to R50 variations in clinical linacs. Phys Medica. 2014;30(7):827-832. https://doi.org/10.1016/j.ejmp.2014.03.007

Gao S, Chetvertkov MA, Simon WE, Sadeghi A, Balter PA. Monitoring linear accelerators electron beam energy constancy with a 2D ionization chamber array and double-wedge phantom. J Appl Clin Med Phys. 2020;21(1):18-25. https://doi.org/10.1002/acm2.12751

Speight RJ, Esmail A, Weston SJ. Quality assurance of electron and photon beam energy using the BQ-Check phantom. J Appl Clin Med Phys. 2011;12(2):239-244. https://doi.org/10.1120/jacmp.v12i2.3366

Bedford JL, Warrington AP. Commissioning of Volumetric Modulated Arc Therapy (VMAT). Int J Radiat Oncol. 2009;73(2):537-545. https://doi.org/10.1016/j.ijrobp.2008.08.055

Palmans H, Andreo P, Huq MS, Seuntjens J, Christaki KE, Meghzifene A. Dosimetry of small static fields used in external photon beam radiotherapy: Summary of TRS‐483, the IAEA–AAPM international Code of Practice for reference and relative dose determination. Med Phys. 2018;45(11). https://doi.org/10.1002/mp.13208

Paul J. Keall. The Management of Respiratory Motion in Radiation Oncology Report of AAPM Task Group 76. Med Phys. 2006;33:3874-390. https://dx.doi.org/10.1118/1.2349696

Fernández Letón P, Baños Capilla C, Bea Gilabert J, et al. Recomendaciones de la Sociedad Española de Física Médica (SEFM) sobre implementación y uso clínico de radioterapia estereotáxica extracraneal (SBRT). Rev Física Médica. 2017;18(2):77-142.

Rodríguez Romero R, Zucca Aparicio D, De la Casa de Julián MÁ, et al. Informe del Grupo de Trabajo de la SEFM sobre Radioterapia Guiada por Superficie (SGRT): Procedimientos recomendados para la aceptación y puesta en funcionamiento. Rev Física Médica. 2022;23(1):45-80. https://doi.org/10.37004/sefm/2022.23.1.003

Lutz W, Winston KR, Maleki N. A system for stereotactic radiosurgery with a linear accelerator. Int J Radiat Oncol. 1988;14(2):373-381. https://doi.org/10.1016/0360-3016(88)90446-4

Du W, Johnson JL, Jiang W, Kudchadker RJ. On the selection of gantry and collimator angles for isocenter localization using Winston‐Lutz tests. J Appl Clin Med Phys. 2016;17(1):167-178. https://doi.org/10.1120/jacmp.v17i1.5792

Pudsey LMM, Biasi G, Ralston A, Rosenfeld A, Poder J. Detection of rotational errors in single-isocenter multiple-target radiosurgery: Is a routine off-axis Winston–Lutz test necessary? J Appl Clin Med Phys. 2022;23(9). https://doi.org/10.1002/acm2.13665

Bissonnette J-P. COMP report: CPQR technical quality control guidelines for accelerator-integrated cone-beam systems for verification imaging. J Appl Clin Med Phys. 2018;19(3):9-12. https://doi.org/10.1002/acm2.12302

Netherton T, Li Y, Gao S, et al. Experience in commissioning the halcyon linac. Med Phys. 2019;46(10):4304-4313. https://doi.org/10.1002/mp.13723

Kirkby C, Ghasroddashti E, Angers CP, Zeng G, Barnett E. COMP report: CPQR technical quality control guideline for medical linear accelerators and multileaf collimators. J Appl Clin Med Phys. 2018;19(2):22-28. https://doi.org/10.1002/acm2.12236

Van Esch A, Depuydt T, Huyskens DP. The use of an aSi-based EPID for routine absolute dosimetric pre-treatment verification of dynamic IMRT fields. Radiother Oncol. 2004;71(2):223-234. https://doi.org/10.1016/j.radonc.2004.02.018

Yang Y, Xing L. Quantitative measurement of MLC leaf displacements using an electronic portal image device. Phys Med Biol. 2004;49(8):1521-1533. https://doi.org/10.1088/0031-9155/49/8/010

Richart J, Pujades MC, Perez-Calatayud J, et al. QA of dynamic MLC based on EPID portal dosimetry. Phys Medica. 2012;28(3):262-268. https://doi.org/10.1016/j.ejmp.2011.06.046

Christophides D, Davies A, Fleckney M. Automatic detection of MLC relative position errors for VMAT using the EPID-based picket fence test. Phys Med Biol. 2016;61(23):8340-8359. https://doi.org/10.1088/0031-9155/61/23/8340

Van der Wal E, Wiersma J, Ausma AH, et al. NCS Report 22: Code of practice for the quality assurance and control for intensity modulated radiotherapy; 2013. https://doi.org/10.25030/ncs-022

Kinsella P, Shields L, McCavana P, McClean B, Langan B. Determination of MLC model parameters for Monaco using commercial diode arrays. J Appl Clin Med Phys. 2016;17(4):37-47. https://doi.org/10.1120/jacmp.v17i4.6190

Faught JT, Balter PA, Johnson JL, et al. An FMEA evaluation of intensity modulated radiation therapy dose delivery failures at tolerance criteria levels. Med Phys. 2017;44(11):5575-5583. https://doi.org/10.1002/mp.12551

Yun H, Carlone M, Liu Z. Topic modeling of maintenance logs for linac failure modes and trends identification. J Appl Clin Med Phys. 2022;23(1). https://doi.org/10.1002/acm2.13477

Ma Y, Wang X, Mai R, et al. An electronic portal image device (EPID)‐based multiplatform rapid daily LINAC QA tool. J Appl Clin Med Phys. 2021;22(1):45-58. https://doi.org/10.1002/acm2.13055

Pearson M, Eaton D, Greener T. Long‐term experience of MPC across multiple TrueBeam linacs: MPC concordance with conventional QC and sensitivity to real‐world faults. J Appl Clin Med Phys. 2020;21(8):224-235. https://doi.org/10.1002/acm2.12950

Puyati W, Khawne A, Barnes M, Zwan B, Greer P, Fuangrod T. Predictive quality assurance of a linear accelerator based on the machine performance check application using statistical process control and ARIMA forecast modeling. J Appl Clin Med Phys. 2020;21(8):73-82. https://doi.org/10.1002/acm2.12917

Tang G, LoSasso T, Chan M, Hunt M. Impact of a Centralized Database System on Radiation Therapy Quality Assurance Management at a Large Health Care Network: 5 Years’ Experience. Pract Radiat Oncol. 2022;12(5):e434-e441. https://doi.org/10.1016/j.prro.2022.03.003

Li T, Wu QJ, Matzen T, Yin F, O’Daniel JC. Diode‐based transmission detector for IMRT delivery monitoring: a validation study. J Appl Clin Med Phys. 2016;17(5):235-244. https://doi.org/10.1120/jacmp.v17i5.6204

Choi DH, Kim JS, Ahn WS, Ahn S. Feasibility Study on Dosimetric Verification and Annual Quality Assurance Using a Transmission-Type Chamber. SSRN Electron J. Published online 2021. https://doi.org/10.2139/ssrn.3969903

Miura H, Takeichi F, Enosaki T, Yamada K, Ozawa S, Nagata Y. Feasibility of output quality assurance considering gantry angle using “Stealth Chamber”. Polish J Med Phys Eng. 2021;27(4):299-302. https://doi.org/10.2478/pjmpe-2021-0035

Kalet AM, Luk SMH, Phillips MH. Radiation Therapy Quality Assurance Tasks and Tools: The Many Roles of Machine Learning. Med Phys. 2020;47(5):e168-e177. https://doi.org/10.1002/mp.13445

Ma M, Liu C, Wei R, Liang B, Dai J. Predicting machine’s performance record using the stacked long short-term memory (LSTM) neural networks. J Appl Clin Med Phys. 2022;23(3). https://doi.org/10.1002/acm2.13558

Brouwer CL. Artificial Intelligence: Methods and Applications in Radiotherapy. Semin Radiat Oncol. 2022;32(4):303-448.

Luk SMH, Ford EC, Phillips MH, Kalet AM. Improving the Quality of Care in Radiation Oncology using Artificial Intelligence. Clin Oncol. 2022;34(2):89-98. https://doi.org/10.1016/j.clon.2021.11.011

Simon L, Robert C, Meyer P. Artificial intelligence for quality assurance in radiotherapy. Cancer/Radiothérapie. 2021;25(6-7):623-626. https://doi.org/10.1016/j.canrad.2021.06.012

Chan MF, Witztum A, Valdes G. Integration of AI and Machine Learning in Radiotherapy QA. Front Artif Intell. 2020;3(September):1-8. https://doi.org/10.3389/frai.2020.577620

Karzmark C.J., Nunan C.S., Tanabe E. Medical Electron Accelerators. McGraw-Hill, Incorporated, Health Professions Division 1993, ed.; 1993.

Lizuain Arroyo MC, Brosed Serreta A. Fundamentos de Física Médica. Volumen 3. Radioterapia externa I.Bases físicas, equipos, determinación de la dosis absorbida y programa de garantía de calidad. ADI, ed.; 2012.

Grattan MWD, Hounsell AR. Analysis of output trends from Varian 2100C/D and 600C/D accelerators. Phys Med Biol. 2011;56(1):N11-N19. https://doi.org/10.1088/0031-9155/56/1/N02

Glide-Hurst C, Bellon M, Foster R, et al. Commissioning of the Varian TrueBeam linear accelerator: A multi-institutional study. Med Phys. 2013;40(3):031719. https://doi.org/10.1118/1.4790563

Luketina IA, Greig L. Linear accelerator output variability. Australas Phys Eng Sci Med. 2004;27(3):155-159. https://doi.org/10.1007/BF03178676

Kapanen M, Tenhunen M, Hämäläinen T, Sipilä P, Parkkinen R, Järvinen H. Analysis of quality control data of eight modern radiotherapy linear accelerators: the short- and long-term behaviours of the outputs and the reproducibility of quality control measurements. Phys Med Biol. 2006;51(14):3581-3592. https://doi.org/10.1088/0031-9155/51/14/020

Cetnar AJ, DiCostanzo DJ. The lifetime of a linac monitor unit ion chamber. J Appl Clin Med Phys. 2021;22(12):108-114. https://doi.org/10.1002/acm2.13463

Purwar A, Johnsen S, Potter R. Performance characteristics of Kapton sealed ion chambers; 2016.

Zubia K. Beam Quality Guidelines for High Energy Clinac Systems; 2019. https://www.myvarian.com.

Medical Systems V. Beam Quality Guidelines for TrueBeam/TrueBeam STx/EDGE/VitalBeam; 2018. https://www.myvarian.com.

Taylor J, Ruggieri L. Directrices de calidad del haz en Halcyon; 2019. https://www.myvarian.com.

Friebel T, Haber R. Detection of signal drifts by different control charts. En: IFAC Proceedings Volumes. Vol 42. IFAC; 2009:432-437. https://doi.org/10.3182/20090921-3-TR-3005.00076

Descargas

Publicado

2024-05-05

Cómo citar

Lliso Valverde, F., Vilches Pacheco, M., Martínez Albaladejo, M., Almendral Manzano, P., Ambroa Rey, E., Ferrer Gracia, C. L., Pérez-Alija Fernández, J., & Tortosa Oliver, R. (2024). Guía para el control de calidad y seguridad en aceleradores lineales de uso clínico. Revista De Física Médica, 25(1), 77–122. https://doi.org/10.37004/sefm/2024.25.1.007

Número

Sección

Informes
Bookmark and Share