Informe del Grupo de Trabajo de la SEFM sobre Radioterapia Guiada por Superficie (SGRT): Procedimientos recomendados para la aceptación y puesta en funcionamiento

Autores/as

  • Ruth Rodríguez Romero Hospital Universitario Puerta de Hierro. Majadahonda.
  • Daniel Zucca Aparicio Hospital Universitario HM Sanchinarro. Madrid.
  • Miguel Ángel de la Casa de Julián Hospital Universitario HM Sanchinarro. Madrid.
  • Víctor Díaz Pascual Clínica Universidad de Navarra. Pamplona.
  • Iago González Vecín Hospital General Universitario Dr. Negrín. Las Palmas de Gran Canaria.
  • Olivia Jordi Ollero Institut Català d ́Oncologia (ICO). Barcelona.
  • Benigno Barbés Fernández IMED Hospitales. Murcia.

DOI:

https://doi.org/10.37004/sefm/2022.23.1.003

Palabras clave:

SGRT, control de calidad, aceptación y puesta en funcionamiento, latencias

Resumen

Se presentan las conclusiones del estudio realizado por el Grupo de Trabajo sobre Radioterapia Guiada por Superficie, promovido por la Sociedad Española de Física Médica. Los objetivos han sido la elaboración de procedimientos para la aceptación y puesta en funcionamiento de dispositivos de posicionamiento, monitorización y seguimiento, basados en el reconocimiento de la superficie del paciente, orientaciones para la adquisición e instalación de este equipamiento, así como establecer recomendaciones para un uso clínico fiable.

Se ha delimitado el campo de estudio a los programas y dispositivos comerciales, evaluando las ventajas y limitaciones de estas técnicas para diferentes aplicaciones en Radioterapia. Basados en la bibliografía disponible, y en la experiencia de centros nacionales con implantación de la SGRT, se han establecido tolerancias y periodicidades para las distintas pruebas de control de calidad. Además, se han propuesto líneas de trabajo para la implantación de técnicas especiales que requieren mayor exactitud por parte de estos dispositivos.

Finalmente, se han incluido tres anexos con orientaciones prácticas sobre la medida y análisis de las latencias de esos sistemas, la construcción de maniquíes de control de calidad para su medición, así como las implicaciones clínicas asociadas a las mismas en el tratamiento de lesiones sometidas a movimiento respiratorio.

Referencias

Willoughby T, Lehmann J, Bencomo JA, et al. Quality assurance for nonradiographic radiotherapy localization and positioning systems: Report of Task Group 147. Med Phys.2012;39(4):1728-47. doi:10.1118/1.3681967

Lizuain MC, Capuz AB, Delgado JM, Crispin V, Garcia S, Juan XJ, et al. Recomendaciones para el control de calidad de equipos y técnicas de radioterapia guiada por la imagen (IGRT). ADI Servicios Editoriales; 2013.

Freislederer P, Kügele M, Öllers M, et al. Recent advances in Surface Guided Radiation Therapy. Radiat Oncol. 2020;15(1):187. doi:10.1186/s13014-020-01629-w

Batista V, Meyer J, Kügele M, Al-Hallaq H. Clinical paradigms and challenges in surface guided radiation therapy: Where do we go from here? Radiother Oncol. 2020;153:34-42. doi:10.1016/j.radonc.2020.09.041

Weiss E, Vorwerk H, Richter S, Hess CF. Interfractional and intrafractional accuracy during radiotherapy of gynecologic carcinomas: A comprehensive evaluation using the ExacTrac system. Int J Radiat Oncol Biol Phys. 2003;56(1):69-79. doi:10.1016/S0360-3016(02)04616-3

Yin F-F, Ryu S, Ajlouni M, et al. A technique of intensity-modulated radiosurgery (IMRS) for spinal tumors. Med Phys. 2002;29(12):2815-22. doi:10.1118/1.1521722

Wiersma RD, McCabe BP, Belcher AH, Jensen PJ, Smith B, Aydogan B. Technical Note: High temporal resolution characterization of gating response time. Med Phys. 2016;43(6):2802-6. doi:10.1118/1.4948500

Ehler ED, Nelms BE, Tomé WA. On the dose to a moving target while employing different IMRT delivery mechanisms. Radiother Oncol. 2007;83(1):49-56. doi:10.1016/j.radonc.2007.02.007

Li HS, Chetty IJ, Solberg TD. Quantifying the interplay effect in prostate IMRT delivery using a convolution-based method. Med Phys. 2008;35(5):1703-10. doi:10.1118/1.2897972

Coolens C, Evans PM, Seco J, et al. The susceptibility of IMRT dose distributions to intrafraction organ motion: An investigation into smoothing filters derived from four dimensional computed tomography data. Med Phys. 2006;33(8):2809-18. doi:10.1118/1.2219329

ICRU Report 83 - Prescribing, Recording, and Reporting Photon-Beam Intensity-Modulated Radiation Therapy (IMRT). J ICRU. 2010;10(1):1-111. doi:10.1093/jicru/ndq025

Manger RP, Paxton AB, Pawlicki T, et al. Failure mode and effects analysis and fault tree analysis of surface image guided cranial radiosurgery. Med Phys. 2015;42(5):2449-61. doi:10.1118/1.4918319

Gensheimer MF, Zeng J, Carlson J, et al. Influence of planning time and treatment complexity on radiation therapy errors. Pract Radiat Oncol. 2016;6(3):187-93. doi:10.1016/j.prro.2015.10.017

Stieler F, Wenz F, Shi M, Lohr F. A novel surface imaging system for patient positioning and surveillance during radiotherapy. Strahlentherapie und Onkol. 2013;189(11):938-44. doi:10.1007/s00066-013-0441-z

Murphy MJ, Balter J, Balter S, et al. The management of imaging dose during image-guided radiotherapy: Report of the AAPM Task Group 75. Med Phys. 2007;34(10):4041-63. doi:10.1118/1.2775667

Rwigema JCM, Lamiman K, Reznik RS, Lee NJH, Olch A, Wong KK. Palliative radiation therapy for superior vena cava syndrome in metastatic Wilms tumor using 10XFFF and 3D surface imaging to avoid anesthesia in a pediatric patient — a teaching case. Adv Radiat Oncol. 2017;2(1):101-4. doi:10.1016/j.adro.2016.12.007

Wong KK, Ragab O, Tran HN, et al. Acute toxicity of craniospinal irradiation with volumetric-modulated arc therapy in children with solid tumors. Pediatric Blood Cancer. 2018;65(7). doi:10.1002/pbc.27050

Wiant DB, Wentworth S, Maurer JM, Vanderstraeten CL, Terrell JA, Sintay BJ. Surface imaging-based analysis of intrafraction motion for breast radiotherapy patients. J Appl Clin Med Phys. 2014;15(6):147-59. doi:10.1120/jacmp.v15i6.4957

Sueyoshi M, Olch AJ, Liu KX, Chlebik A, Clark D, Wong KK. Eliminating Daily Shifts, Tattoos, and Skin Marks: Streamlining Isocenter Localization With Treatment Plan Embedded Couch Values for External Beam Radiation Therapy. Pract Radiat Oncol. 2019;9(1):e110-7. doi:10.1016/j.prro.2018.08.011

Crook JM, Raymond Y, Salhani D, Yang H, Esche B. Prostate motion during standard radiotherapy as assessed by fiducial markers. Radiother Oncol. 1995;37(1):35-42. doi:10.1016/0167-8140(95)01613-L

Ramsey CR, Scaperoth D, Seibert R, Chase D, Byrne T, Mahan S. Image-guided helical tomotherapy for localized prostate cancer: technique and initial clinical observations. J Appl Clin Med Phys. 2007;8(3):2320. doi:10.1120/jacmp.v8i3.2320

Lu XQ, Shanmugham LN, Mahadevan A, et al. Organ Deformation and Dose Coverage in Robotic Respiratory-Tracking Radiotherapy. Int J Radiat Oncol Biol Phys. 2008;71(1):281-9. doi:10.1016/j.ijrobp.2007.12.042

Brock KK, McShan DL, Ten Haken RK, Hollister SJ, Dawson LA, Balter JM. Inclusion of organ deformation in dose calculations. Med Phys. 2003;30(3):290-5. doi:10.1118/1.1539039

Von Siebenthal M, Sźkely G, Lomax AJ, Cattin PC. Systematic errors in respiratory gating due to intrafraction deformations of the liver. Med Phys. 2007;34(9):3620-9. doi:10.1118/1.2767053

Benedict SH, Yenice KM, Followill D, et al. Stereotactic body radiation therapy: The report of AAPM Task Group 101. Med Phys. 2010;37(8):4078-101. doi:10.1118/1.3438081

Keall P, Mageras G. Managing respiratory motion in radiation therapy. AAPM 46th Annu Meet (TG 76 Task Group). Published online 2004:1-16. http://www.aapm.org/meetings/04AM/pdf/14-2269-79352.pdf

Hoisak JDP, Brent Paxton AB, Waghorn BJ, Pawlicki T. Surface Guided Radiation Therapy. In: Taylor & Francis Ltd, ed. Definitions. Taylor & Francis Ltd; 2020:492. doi:10.32388/gf38iv

Stanley DN, McConnell KA, Kirby N, Gutiérrez AN, Papanikolaou N, Rasmussen K. Comparison of initial patient setup accuracy between surface imaging and three point localization: A retrospective analysis. J Appl Clin Med Phys. 2017;18(6):58-61. doi:10.1002/acm2.12183

Alderliesten T, Sonke JJ, Betgen A, Honnef J, Van Vliet-Vroegindeweij C, Remeijer P. Accuracy evaluation of a 3-dimensional surface imaging system for guidance in deep-inspiration breath-hold radiation therapy. Int J Radiat Oncol Biol Phys. 2013;85(2):536-42. doi:10.1016/j.ijrobp.2012.04.004

Cravo Sá A, Fermento A, Neves D, et al. Radiotherapy setup displacements in breast cancer patients: 3D surface imaging experience. Reports Pract Oncol Radiother. 2018;23(1):61-7. doi:10.1016/j.rpor.2017.12.007

Gierga DP, Turcotte JC, Tong LW, Chen YLE, DeLaney TF. Analysis of setup uncertainties for extremity sarcoma patients using surface imaging. Pract Radiat Oncol. 2014;4(4):261-6. doi:10.1016/j.prro.2013.09.001

Kügele M, Mannerberg A, Nørring Bekke S, et al. Surface guided radiotherapy (SGRT) improves breast cancer patient setup accuracy. J Appl Clin Med Phys. 2019;20(9):61-8. doi:10.1002/acm2.12700

Schöffel PJ, Harms W, Sroka-Perez G, Schlegel W, Karger CP. Accuracy of a commercial optical 3D surface imaging system for realignment of patients for radiotherapy of the thorax. Phys Med Biol. 2007;52(13):3949-63. doi:10.1088/0031-9155/52/13/019

Lee SK, Huang S, Zhang L, et al. Accuracy of surface-guided patient setup for conventional radiotherapy of brain and nasopharynx cancer. J Appl Clin Med Phys. 2021;22(5):48-57. doi:10.1002/acm2.13241

Zhao B, Maquilan G, Jiang S, Schwartz DL. Minimal mask immobilization with optical surface guidance for head and neck radiotherapy. J Appl Clin Med Phys. 2018;19(1):17-24. doi:10.1002/acm2.12211

Wiant D, Squire S, Liu H, Maurer J, Lane Hayes T, Sintay B. A prospective evaluation of open face masks for head and neck radiation therapy. Pract Radiat Oncol. 2016;6(6):e259-67. doi:10.1016/j.prro.2016.02.003

Rigley J, Robertson P, Scattergood L. Radiotherapy without tattoos: Could this work? Radiography. 2020;26(4):288-93. doi:10.1016/j.radi.2020.02.008

Jimenez RB, Batin E, Giantsoudi D, et al. Tattoo free setup for partial breast irradiation: A feasibility study. J Appl Clin Med Phys. 2019;20(4):45-50. doi:10.1002/acm2.12557

Sixel KE, Aznar MC, Ung YC. Deep inspiration breath hold to reduce irradiated heart volume in breast cancer patients. Int J Radiat Oncol Biol Phys. 2001;49(1):199-204. doi:10.1016/S0360-3016(00)01455-3

Zagar TM, Kaidar-Person O, Tang X, et al. Utility of Deep Inspiration Breath Hold for Left-Sided Breast Radiation Therapy in Preventing Early Cardiac Perfusion Defects: A Prospective Study. In: International Journal of Radiation Oncology Biology Physics. Vol 97;2017:903-9. doi:10.1016/j.ijrobp.2016.12.017

Laaksomaa M, Sarudis S, Rossi M, et al. AlignRT® and CatalystTM in whole-breast radiotherapy with DIBH: Is IGRT still needed? J Appl Clin Med Phys. 2019;20(3):97-104. doi:10.1002/acm2.12553

Proyecto MARR - Sociedad Española de Física Médica. Accessed October 5, 2021. https://sefm.es/aplicaciones/proyecto-marr/

Al-Hallaq H, Batista V, Kügele M, Ford E, Viscariello N, Meyer J. The role of surface-guided radiation therapy for improving patient safety. Radiother Oncol. 2021;163:229-36. doi:10.1016/j.radonc.2021.08.008

Wang LT, Solberg TD, Medin PM, Boone R. Infrared patient positioning for stereotactic radiosurgery of extracranial tumors. Comput Biol Med. 2001;31(2):101-11. doi:10.1016/S0010-4825(00)00026-3

Takakura T, Mizowaki T, Nakata M, et al. The geometric accuracy of frameless stereotactic radiosurgery using a 6D robotic couch system. Phys Med Biol. 2010;55(1):1-10. doi:10.1088/0031-9155/55/1/001

Verbakel, Wilko F.A.R., Lagerwaard FJ, Verduin AJE, Heukelom S, Slotman BJ, Cuijpers JP. The accuracy of frameless stereotactic intracranial radiosurgery. Radiother Oncol. 2010;97(3):390-4. doi:10.1016/j.radonc.2010.06.012

Kim J, Jin JY, Walls N, et al. Image-guided localization accuracy of stereoscopic planar and volumetric imaging methods for stereotactic radiation surgery and stereotactic body radiation therapy: A phantom study. Int J Radiat Oncol Biol Phys. 2011;79(5):1588-96. doi:10.1016/j.ijrobp.2010.05.052

Rusinkiewicz S, Levoy M. Efficient variants of the ICP algorithm. Proc Int Conf 3-D Digit Imaging Model 3DIM. Published online 2001:145-52. doi:10.1109/IM.2001.924423

Placht S, Stancanello J, Schaller C, Balda M, Angelopoulou E. Fast time-of-flight camera based surface registration for radiotherapy patient positioning. Med Phys. 2011;39(1):4-17. doi:10.1118/1.3664006

Erdi YE, Rosenzweig K, Erdi AK, et al. Radiotherapy treatment planning for patients with non-small cell lung cancer using positron emission tomography (PET). Radiother Oncol. 2002;62(1):51-60. doi:10.1016/S0167-8140(01)00470-4

Jarvis LA, Hachadorian RL, Jermyn M, et al. Initial Clinical Experience of Cherenkov Imaging in External Beam Radiation Therapy Identifies Opportunities to Improve Treatment Delivery. Int J Radiat Oncol Biol Phys. 2021;109(5):1627-37. doi:10.1016/j.ijrobp.2020.11.013

Willoughby TR, Forbes AR, Buchholz D, et al. Evaluation of an infrared camera and X-ray system using implanted fiducials in patients with lung tumors for gated radiation therapy. Int J Radiat Oncol. 2006;66(2):568-75. doi:10.1016/J.IJROBP.2006.05.029

Shi C, Tang X, Chan M. Evaluation of the new respiratory gating system. Precis Radiat Oncol. 2017;1(4):127-33. doi:10.1002/pro6.34

Zeng C, Xiong W, Li X, et al. Intrafraction tumor motion during deep inspiration breath hold pancreatic cancer treatment. J Appl Clin Med Phys. 2019;20(5):37-43. doi:10.1002/acm2.12577

Klein EE, Hanley J, Bayouth J, et al. Task group 142 report: Quality assurance of medical accelerators. Med Phys. 2009;36(9):4197-212. doi:10.1118/1.3190392

Yin F-F, Wong J, Balter J, et al. The role of in-room kV X-Ray imaging for patient setup and target localization Report of AAPM Task Group 104. Data Manag. 2009;(104).

Jin JY, Yin FF, Tenn SE, Medin PM, Solberg TD. Use of the BrainLAB ExacTrac X-Ray 6D System in Image-Guided Radiotherapy. Med Dosim. 2008;33(2):124-34. doi:10.1016/j.meddos.2008.02.005

Dieterich S, Cavedon C, Chuang CF, et al. Report of AAPM TG 135: Quality assurance for robotic radiosurgery. Med Phys. 2011;38(6):2914-36. doi:10.1118/1.3579139

Schnarr E, Beneke M, Casey D, et al. Feasibility of real-time motion management with helical tomotherapy. Med Phys. 2018;45(4):1329-37. doi:10.1002/mp.12791

Brahme A, Nyman P, Skatt B. 4D laser camera for accurate patient positioning, collision avoidance, image fusion and adaptive approaches during diagnostic and therapeutic procedures. Med Phys. 2008;35(5):1670-81. doi:10.1118/1.2889720

Pallotta S, Marrazzo L, Ceroti M, Silli P, Bucciolini M. A phantom evaluation of Sentinel, a commercial laser/camera surface imaging system for patient setup verification in radiotherapy. Med Phys. 2012;39(2):706-12. doi:10.1118/1.3675973

Meyer J, Smith W, Geneser S, et al. Characterizing a deformable registration algorithm for surface-guided breast radiotherapy. Med Phys. 2020;47(2):352-62. doi:10.1002/MP.13921

Pallotta S, Kugele M, Redapi L, Ceberg S. Validation of a commercial deformable image registration for surface-guided radiotherapy using an ad hoc-developed deformable phantom. Med Phys. 2020;47(12):6310-18. doi:10.1002/MP.14527

Siebert JP, Marshall SJ. Human body 3D imaging by speckle texture projection photogrammetry. Sens Rev. 2000;20(3):218-26. doi:10.1108/02602280010372368

Nguyen D, Farah J, Barbet N, Khodri M. Commissioning and performance testing of the first prototype of AlignRT InBoreTM a HalcyonTM and EthosTM-dedicated surface guided radiation therapy platform. Phys Medica. 2020;80:159-66. doi:10.1016/j.ejmp.2020.10.024

Bert C, Metheany KG, Doppke KP, Taghian AG, Powell SN, Chen GTY. Clinical experience with a 3D surface patient setup system for alignment of partial-breast irradiation patients. Int J Radiat Oncol Biol Phys. 2006;64(4):1265-74. doi:10.1016/j.ijrobp.2005.11.008

Krell G, Saeid Nezhad N, Walke M, Al-Hamadi A, Gademann G. Assessment of Iterative Closest Point Registration Accuracy for Different Phantom Surfaces Captured by an Optical 3D Sensor in Radiotherapy. Comput Math Methods Med. 2017;2017. doi:10.1155/2017/2938504

Hoisak JDP, Pawlicki T. The Role of Optical Surface Imaging Systems in Radiation Therapy. Semin Radiat Oncol. 2018;28(3):185-93. doi:10.1016/j.semradonc.2018.02.003

Fischler MA, Bolles RC. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Graph Image Process. 1981;24(6):381-95. doi:10.1145/358669.358692

Park J, Zhou QY, Koltun V. Colored Point Cloud Registration Revisited. Proc IEEE Int Conf Comput Vis. 2017;2017-Octob:143-52. doi:10.1109/ICCV.2017.25

Joung JH, An KH, Kang JW, Chung MJ, Yu W. 3D environment reconstruction using modified color ICP algorithm by fusion of a camera and a 3D laser range finder. 2009 IEEE/RSJ Int Conf Intell Robot Syst IROS 2009. Published online 2009:3082-8. doi:10.1109/IROS.2009.5354500

Korn M, Holzkothen M, Pauli J. Color supported generalized-ICP - IEEE Conference Publication. In: 2014 International Conference on Computer Vision Theory and Applications (VISAPP). IEEE; 2014. doi:978-9-8975-8133-5

Schell MC, Bova FJ, Larson D a, et al. Stereotactic Radiosurgery Report of Task Group 42 Radiation Therapy Committee for the American Association of Physicists in Medicine (AAPM). Med Phys. 1995;(5):50.

Faught AM, Trager M, Yin FF, Kirkpatrick J, Adamson J. Re-examining TG-142 recommendations in light of modern techniques for linear accelerator based radiosurgery. Med Phys. 2016;43(10):5437-41. doi:10.1118/1.4962471

Pinza Molina C, Lliso Valverde F. Control de calidad en aceleradores de electrones para uso médico. In: Aula Documental de Investigación, ed. Sociedad Española de Física Médica; 2007:451.

BOE-A-1998-20644. https://www.boe.es/eli/es/rd/1998/07/17/1566

European Council Directive 2013/59/Euratom on basic safety standards for protection against the dangers arising from exposure to ionising radiation and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom. Published online 2014:57: 1–73.

Thomadsen BR, Heaton HT, Jani SK, et al. Off-label use of medical products in radiation therapy: Summary of the Report of AAPM Task Group No. 121. Med Phys. 2010;37(5):2300-11. doi:10.1118/1.3392286

Phillips MH, Singer K, Miller E, Stelzer K. Commissioning an image-guided localization system for radiotherapy. Int J Radiat Oncol Biol Phys. 2000;48(1):267-76. doi:10.1016/S0360-3016(00)00581-2

Wiersma RD, Tomarken SL, Grelewicz Z, Belcher AH, Kang H. Spatial and temporal performance of 3D optical surface imaging for real-time head position tracking. Med Phys. 2013;40(11). doi:10.1118/1.4823757

Paxton AB, Manger RP, Pawlicki T, Kim GY. Evaluation of a surface imaging system’s isocenter calibration methods. J Appl Clin Med Phys. 2017;18(2):85-91. doi:10.1002/acm2.12054

Russell C, Mack H, Paul S, Senthi S. OC-0190: Surface guided radiation therapy for breast cancer improves accuracy without the need for skin marks. Radiother Oncol. 2018;127:S102. doi:10.1016/s0167-8140(18)30500-0

Lujan AE, Larsen EW, Balter JM, Ten Haken RK. A method for incorporating organ motion due to breathing into 3D dose calculations. Med Phys. 1999;26(5):715-20. doi:10.1118/1.598577

Roland T, Mavroidis P, Shi C, Papanikolaou N. Incorporating system latency associated with real-time target tracking radiotherapy in the dose prediction step. Phys Med Biol. 2010;55(9):2651-68. doi:10.1088/0031-9155/55/9/015

Bertholet J, Knopf A, Eiben B, et al. Real-time intrafraction motion monitoring in external beam radiotherapy. Phys Med Biol. 2019;64(15):15TR01. doi:10.1088/1361-6560/AB2BA8

Cui G, Housley DJ, Chen F, Mehta VK, Shepard DM. Delivery efficiency of an Elekta linac under gated operation. J Appl Clin Med Phys. 2014;15(5):2-11. doi:10.1120/jacmp.v15i5.4713

Barfield G, Burton EW, Stoddart J, Metwaly M, Cawley MG. Quality assurance of gating response times for surface guided motion management treatment delivery using an electronic portal imaging detector. Phys Med Biol. 2019;64(12). doi:10.1088/1361-6560/ab205a

Gevaert T, Verellen D, Tournel K, et al. Overview of positioning techniques using Image Guided Radiotherapy. Phys Medica. 2011;27:S10. doi:10.1016/j.ejmp.2011.06.023

Bissonnette JP, Balter PA, Dong L, et al. Quality assurance for image-guided radiation therapy utilizing CT-based technologies: A report of the AAPM TG-179. Med Phys. 2012;39(4):1946-63. doi:10.1118/1.3690466

Laaksomaa M, Moser T, Kritz J, Pynnönen K, Rossi M. Comparison of three differently shaped ROIs in free breathing breast radiotherapy setup using surface guidance with AlignRT®. Reports Pract Oncol Radiother. 2021;26(4):545-52. doi:10.5603/rpor.a2021.0062

Landberg T, Chavaudra J, Dobbs J, et al. ICRU Report 62, Prescribing, Recording and Reporting Photon Beam Therapy. International Commission on Radiation Units and Measurements 1999;os32(1):NP-NP. doi:10.1093/jicru/os32.1.report62

Barbés B, Azcona JD, Prieto E, de Foronda JM, García M, Burguete J. Development and clinical evaluation of a simple optical method to detect and measure patient external motion. J Appl Clin Med Phys. 2015;16(5):306-21. doi:10.1120/jacmp.v16i5.5524

Tachibana H, Kitamura N, Ito Y, et al. Management of the baseline shift using a new and simple method for respiratory-gated radiation therapy: Detectability and effectiveness of a flexible monitoring system. Med Phys. 2011;38(7):3971-80. doi:10.1118/1.3598434

Hattel SH, Andersen PA, Wahlstedt IH, Damkjær S, Saini A, Thomsen JB. Evaluation of setup and intrafraction motion for surface guided whole-breast cancer radiotherapy. J Appl Clin Med Phys. 2019;20(6):39-44. doi:10.1002/acm2.12599

Xiao A, Crosby J, Malin M, et al. Single-institution report of setup margins of voluntary deep-inspiration breathhold (DIBH) whole breast radiotherapy implemented with real-time surface imaging. J Appl Clin Med Phys. 2018;19(4):205-13. doi:10.1002/acm2.12368

Li G, Ballangrud Å, Kuo LC, et al. Motion monitoring for cranial frameless stereotactic radiosurgery using video-based three-dimensional optical surface imaging. Med Phys. 2011;38(7):3981-94. doi:10.1118/1.3596526

Cerviño LI, Detorie N, Taylor M, et al. Initial clinical experience with a frameless and maskless stereotactic radiosurgery treatment. Pract Radiat Oncol. 2012;2(1):54-62. doi:10.1016/j.prro.2011.04.005

Sánchez Rubio P, Rodríguez Romero R, Pinto Monedero M Martínez Ortega J. Experiencia inicial en el uso de SGRT junto con IGRT para posicionamiento y control intrafracción en tratamientos de Radiocirugía Estereotáxica (SRS). 7o Congreso Conjunto SEFM-SEPR. On Line. In: 2021. Accessed June 24, 2021. https://plataforma.congresosefm-sepr.es/event/4/ contributions/2201/

Pham NL, Reddy PV, Murphy JD, et al. Frameless, Real Time, Surface Imaging Guided Radiosurgery: Clinical Outcomes for Brain Metastases. Int J Radiat Oncol. 2015;93(3):E105. doi:10.1016/j.ijrobp.2015.07.815

Pan H, Cerviño LI, Pawlicki T, et al. Frameless, real-time, surface imaging-guided radiosurgery: Clinical outcomes for brain metastases. Neurosurgery. 2012;71(4):844-51. doi:10.1227/NEU.0b013e3182647ad5

Soufi M, Arimura H. Surface-imaging-based patient positioning in radiation therapy. In: Image-Based Computer-Assisted Radiation Therapy. Springer Singapore; 2017:237-70. doi:10.1007/978-981-10-2945-5_10

Zhao X, Lau SKM, Zakeri K, et al. Single Isocenter Frameless Volumetric Modulated Arc Radiosurgery for Multiple Intracranial Metastases. Int J Radiat Oncol. 2015;93(3):E92-3. doi:10.1016/j.ijrobp.2015.07.782

Pinto Monedero M, Rodríguez Romero R, Sánchez Rubio P, Martínez Ortega J et al. 7o Congreso Conjunto SEFM-SEPR. On Line (27 de mayo de 2021 - 4 de junio de 2021): Protocolo de posicionamiento y control de movimiento intra-fracción mediante un sistema combinado de IGRT y SGRT en tratamientos de radiocirugía estereotáxica · Congresos S. Published 2021. Accessed June 24, 2021. https://plataforma.congresosefmsepr.es/event/4/contributions/2214/

Rodríguez Romero R, Pinto Monedero M, Sánchez Rubio P, et al. Control de calidad de un sistema de guiado por superficie para tratamientos estereotáxicos. 7o Congreso Conjunto SEFM- SEPR. On Line. In: ; 2021. Accessed June 24, 2021. https://plataforma.congresosefmsepr.es/event/4/contributions/2203/

Du W, Gao S, Jiang W, Kudchadker RJ. Independent evaluation of the effectiveness of IsoCal in improving image center accuracy on Varian TrueBeam and Clinac machines. J Appl Clin Med Phys. 2018;19(5):483-90. doi:10.1002/acm2.12402

Hamming VC, Visser C, Batin E, et al. Evaluation of a 3D surface imaging system for deep inspiration breath-hold patient positioning and intra-fraction monitoring. Radiat Oncol. 2019;14(1). doi:10.1186/s13014-019-1329-6

Carl G, Reitz D, Schönecker S, et al. Optical surface scanning for patient positioning in radiation therapy: A prospective analysis of 1902 fractions. Technol Cancer Res Treat. 2018;17:153303381880600. doi:10.1177/1533033818806002

Haji G, Nabizade U, Kazimov K, Guliyeva N, Isayev I. Liver dose reduction by deep inspiration breath hold technique in right-sided breast irradiation. Radiat Oncol J. 2019;37(4):254-8. doi:10.3857/roj.2019.00206

Fernández Letón P, Baños Capilla C, Gilabert JB, et al. Recomendaciones de la Sociedad Española de Física Médica (SEFM) sobre implementación y uso clínico de radioterapia estereotáxica extracraneal (SBRT). Rev Fis Med 2017;18(2):77-142.

Bissonnette JP, Balter PA, Dong L, et al. Quality assurance for image-guided radiation therapy utilizing CT-based technologies: A report of the AAPM TG-179. Med Phys. Published online 2012. doi:10.1118/1.3690466

Cerviño LI, Gupta S, Rose MA, Yashar C, Jiang SB. Using surface imaging and visual coaching to improve the reproducibility and stability of deep-inspiration breath hold for left-breast-cancer radiotherapy. Phys Med Biol. 2009;54(22):6853-65. doi:10.1088/0031-9155/54/22/007

Wiant D, Wentworth S, Liu H, Sintay B. How important is a reproducible breath hold for deep inspiration breath hold breast radiation therapy? Int J Radiat Oncol Biol Phys. 2015;93(4):901-7. doi:10.1016/j.ijrobp.2015.06.010

Genesis Care. Deep Inspiration Breath Hold. Definitions. Published online 2020. doi:10.32388/n5htsi

Zucca Aparicio D, Pérez Moreno JM, Fernández Letón P, García Ruiz-Zorrilla J, Miñambres Moro Á. Programa de garantía de calidad de un sistema de irradiación con control respiratorio basado en marcadores fiduciales externos e internos. Rev Fis Med 2011;12(3):169-86.

Batin E, Depauw N, MacDonald S, Lu HM. Can surface imaging improve the patient setup for proton postmastectomy chest wall irradiation? Pract Radiat Oncol. 2016;6(6):e235-41. doi:10.1016/j.prro.2016.02.001

Huang G, Medlam G, Lee J, et al. Error in the delivery of radiation therapy: Results of a quality assurance review. Int J Radiat Oncol Biol Phys. 2005;61(5):1590-5. doi:10.1016/j.ijrobp.2004.10.017

Wiant DB, Verchick Q, Gates P, et al. A novel method for radiotherapy patient identification using surface imaging. J Appl Clin Med Phys. 2016;17(2):271-8. doi:10.1120/jacmp.v17i2.6066

Novak A, Nyflot MJ, Ermoian RP, et al. Targeting safety improvements through identification of incident origination and detection in a near-miss incident learning system. Med Phys. 2016;43(5):2053-62. doi:10.1118/1.4944739

Lau SKM, Patel K, Kim T, et al. Clinical efficacy and safety of surface imaging guided radiosurgery (SIG-RS) in the treatment of benign skull base tumors. J Neurooncol. 2017;132(2):307-12. doi:10.1007/s11060-017-2370-7

Zhao H, Williams N, Poppe M, et al. Comparison of surface guidance and target matching for image-guided accelerated partial breast irradiation (APBI). Med Phys. 2019;46(11):4717-24. doi:10.1002/mp.13816

Gierga DP, Riboldi M, Turcotte JC, et al. Comparison of Target Registration Errors for Multiple Image-Guided Techniques in Accelerated Partial Breast Irradiation. Int J Radiat Oncol Biol Phys. 2008;70(4):1239-46. doi:10.1016/j.ijrobp.2007.11.020

Chang AJ, Zhao H, Wahab SH, et al. Video surface image guidance for external beam partial breast irradiation. Pract Radiat Oncol. 2012;2(2):97-105. doi:10.1016/j.prro.2011.06.013

Keall PJ, Mageras GS, Balter JM, et al. The management of respiratory motion in radiation oncology report of AAPM Task Group 76. Med Phys. 2006;33(10):3874-900. doi:10.1118/1.2349696

Korreman SS. Motion in radiotherapy: Photon therapy. Phys Med Biol. 2012;57(23). doi:10.1088/0031-9155/57/23/R161

Paganelli C, Whelan B, Peroni M, et al. MRI-guidance for motion management in external beam radiotherapy: Current status and future challenges. Phys Med Biol. 2018;63(22). doi:10.1088/1361-6560/aaebcf

Schwarz M, Cattaneo GM, Marrazzo L. Geometrical and dosimetrical uncertainties in hypofractionated radiotherapy of the lung: A review. Phys Medica. 2017;36:126-39. doi:10.1016/j.ejmp.2017.02.011

Haraldsson A, Ceberg S, Crister C, Engelholm S, Bäck SÅJ, Engström PE. PO-0978 Accurate positioning with decreased treatment time using surface guided tomotherapy. Radiother Oncol. 2019;133:S534-5. doi:10.1016/s0167-8140(19)31398-2

Padilla L, Havnen-Smith A, Cerviño L, Al-Hallaq HA. A survey of surface imaging use in radiation oncology in the United States. J Appl Clin Med Phys. 2019;20(12):70-7. doi:10.1002/acm2.12762

Crop F, Pasquier D, Baczkiewic A, et al. Surface imaging, laser positioning or volumetric imaging for breast cancer with nodal involvement treated by helical TomoTherapy. J Appl Clin Med Phys. 2016;17(5):200-11. doi:10.1120/jacmp.v17i5.6041

Walter F, Freislederer P, Belka C, Heinz C, Söhn M, Roeder F. Evaluation of daily patient positioning for radiotherapy with a commercial 3D surface-imaging system (CatalystTM). Radiat Oncol. 2016;11(1). doi:10.1186/s13014-016-0728-1

Heinzerling JH, Hampton CJ, Robinson M, et al. Use of surface-guided radiation therapy in combination with IGRT for setup and intrafraction motion monitoring during stereotactic body radiation therapy treatments of the lung and abdomen. J Appl Clin Med Phys. 2020;21(5):48-55. doi:10.1002/acm2.12852

Heinzerling JH, Hampton CJ, Robinson M, et al. Surface-Guided Radiation Therapy (SGRT) during Stereotactic Body Radiation Therapy Treatments (SBRT) of the Lung: Dosimetric Implications of Intrafraction Motion. Int J Radiat Oncol. 2019;105(1):E730. doi:10.1016/j.ijrobp.2019.06.819

Ricotti R, Ciardo D, Fattori G, et al. Intra-fraction respiratory motion and baseline drift during breast Helical Tomotherapy. Radiother Oncol. 2017;122(1):79-86. doi:10.1016/j.radonc.2016.07.019

Paravati AJ, Manger R, Nguyen JD, Olivares S, Kim GY, Murphy KT. Initial clinical experience with surface image guided (SIG) radiosurgery for trigeminal neuralgia. Transl Cancer Res. 2014;3(4):333-7. doi:10.3978/j.issn.2218-676X.2014.07.03

Mancosu P, Fogliata A, Stravato A, Tomatis S, Cozzi L, Scorsetti M. Accuracy evaluation of the optical surface monitoring system on EDGE linear accelerator in a phantom study. Med Dosim. 2016;41(2):173-9. doi:10.1016/j.meddos.2015.12.003

Jiang SB, Pope C, Al Jarrah KM, Kung JH, Bortfeld T, Chen GTY. An experimental investigation on intra-fractional organ motion effects in lung IMRT treatments. Phys Med Biol. 2003;48(12):1773-84. doi:10.1088/0031-9155/48/12/307

Shiinoki T, Kawamura S, Uehara T, et al. Quality Assurance for Respiratory-Gated Radiotherapy Using the Real-Time Tumor-Tracking Radiotherapy System. Int J Med Physics, Clin Eng Radiat Oncol. 2014;03(03):125-32. doi:10.4236/ijmpcero.2014.33018

Fledelius W, Keall PJ, Cho B, et al. Tracking latency in image-based dynamic MLC tracking with direct image access. Acta Oncol (Madr). 2011;50(6):952-9. doi:10.3109/0284186X.2011.581693

Jin JY, Yin FF. Time delay measurement for linac based treatment delivery in synchronized respiratory gating radiotherapy. Med Phys. 2005;32(5):1293-6. doi:10.1118/1.1896452

Smith WL, Becker N. Time delays and margins in gated radiotherapy. J Appl Clin Med Phys. 2009;10(3):140-54. doi:10.1120/jacmp.v10i3.2896

Chang Z, Liu T, Cai J, Chen Q, Wang Z, Yin F. SU-E-T-123: Evaluation of Integrated Gating Systems on a Novalis Tx System Using Quantitative Motion Tracking Analyses and Efficient Time-Delay Measurements. In: Medical Physics. Vol 38.; 2011:3514. doi:10.1118/1.3612074

Freislederer P, Reiner M, Hoischen W, et al. Characteristics of gated treatment using an optical surface imaging and gating system on an Elekta linac. Radiat Oncol. 2015;10(1). doi:10.1186/s13014-015-0376-x

Chen L, Bai S, Li G, et al. Accuracy of real-time respiratory motion tracking and time delay of gating radiotherapy based on optical surface imaging technique. Radiat Oncol. 2020;15(1). doi:10.1186/s13014-020-01611-6

Descargas

Publicado

2022-03-02

Número

Sección

Informes

Cómo citar

Informe del Grupo de Trabajo de la SEFM sobre Radioterapia Guiada por Superficie (SGRT): Procedimientos recomendados para la aceptación y puesta en funcionamiento. (2022). Revista De Física Médica, 23(1), 35-80. https://doi.org/10.37004/sefm/2022.23.1.003

Artículos similares

1-10 de 232

También puede Iniciar una búsqueda de similitud avanzada para este artículo.