Validation of cone beam tomographic images generated by deep learning neural networks for adaptive Radiotherapy

Authors

  • Manuel Llorente Manso Servicio de Radioprotección y Física Médica. Centro Oncológico MD Anderson España, Madrid.
  • Sandra Vilela Serrano Servicio de Radioterapia. Centro Oncológico MD Anderson España, Madrid.
  • Carlos Ferrer Gracia Servicio de Radioprotección y Física Médica. Centro Oncológico MD Anderson España, Madrid. https://orcid.org/0000-0003-2837-5210
  • Natalia Carballo González Servicio de Radioterapia. Centro Oncológico MD Anderson España, Madrid.

DOI:

https://doi.org/10.37004/sefm/2024.25.1.003

Keywords:

Synthetic CT, neural networks, U-NET, adaptive Radiotherapy

Abstract

During radiotherapy treatments, tomographic images of the patient are acquired. There is interest in using those images for treatment re-planning. LINAC images, in general, have artifacts that limit their validity for dose calculation. The use of neural networks can enhance the image quality to make them more apt for dose calculation. In this work, we use the well-known neural network U-NET to train a model capable of generating tomographic images valid for dose calculation. The model is trained with images of thorax of 25 patients. The result is verified over the images of 14 patients: 10 thorax and 4 pelvis. The CBCT images are used to generate synthetic CT’s which are compared with the simulation ones. Mean error, mean absolute error, maximum signal to noise ratio and structural similarity index are evaluated.

Doses calculated on both CBCT images and CT are compared. Evaluated parameters are gamma index, D5, D95 and mean dose in the dose volume histogram of the target volume.

All the parameters evaluated presented a statistically relevant improvement.

U-NET neural network can be used on CBCT images to make them more apt for dose calculation.

References

Naimuddin S, Hasegawa B, Mistretta CA. Scatter-glare correction using a convolution algorithm with variable weighting. Med Phys. 1987;14(3):330-334. https://doi.org/10.1118/1.596088

Xu Y, Bai T, Yan H, et al. A practical cone-beam CT scatter correction method with optimized Monte Carlo simulations for image-guided radiation therapy. Phys Med Biol. 2015;60(9):3567-3587. https://doi.org/10.1088/0031-9155/60/9/3567

Zollner, ¨ C., Rit, S., Kurz, C., Vilches-Freixas, G., Kamp, F., Dedes, G., Belka, C., Parodi, K., & Landry, G. Decomposing a prior-CT-based cone-beam CT projection correction algorithm into scatter and beam hardening components. Physics and Imaging in Radiation Oncology. 2017; 3, 49–52. https://doi.org/10.1016/j.phro.2017.09.002

Burgos N, Cardoso MJ, Thielemans K, et al. Attenuation correction synthesis for hybrid PET-MR scanners: application to brain studies. IEEE Trans Med Imaging. 2014;33(12):2332-2341. https://doi.org/10.1109/TMI.2014.2340135

Ye DH, Zikic D, Glocker B, Criminisi A, Konukoglu E. Modality propagation: coherent synthesis of subject-specific scans with data-driven regularization. Med Image Comput Comput Assist Interv. 2013;16(Pt 1):606-613. https://doi.org/10.1007/978-3-642-40811-3_76

Kapanen M, Collan J, Beule A, Seppälä T, Saarilahti K, Tenhunen M. Commissioning of MRI-only based treatment planning procedure for external beam radiotherapy of prostate. Magn Reson Med. 2013;70(1):127-135. https://doi.org/10.1002/mrm.24459

Cao X, Yang J, Gao Y, Guo Y, Wu G, Shen D. Dual-core steered non-rigid registration for multi-modal images via bi-directional image synthesis. Med Image Anal. 2017;41:18-31. https://doi.org/10.1016/j.media.2017.05.004

Huynh T, Gao Y, Kang J, et al. Estimating CT Image From MRI Data Using Structured Random Forest and Auto-Context Model. IEEE Trans Med Imaging. 2016;35(1):174-183. https://doi.org/10.1109/TMI.2015.2461533

Eckl M, Hoppen L, Sarria GR, et al. Evaluation of a cycle-generative adversarial network-based cone-beam CT to synthetic CT conversion algorithm for adaptive radiation therapy. Phys Med. 2020;80:308-316. https://doi.org/10.1016/j.ejmp.2020.11.007

Maspero M, Houweling AC, Savenije MHF, et al. A single neural network for cone-beam computed tomography-based radiotherapy of head-and-neck, lung and breast cancer. Phys Imaging Radiat Oncol. 2020;14:24-31. Published 2020 May 25. https://doi.org/10.1016/j.phro.2020.04.002

Liang X, Chen L, Nguyen D, et al. Generating synthesized computed tomography (CT) from cone-beam computed tomography (CBCT) using CycleGAN for adaptive radiation therapy. Phys Med Biol. 2019;64(12):125002. Published 2019 Jun 10. https://doi.org/10.1088/1361-6560/ab22f9

Ronneberger, O., Fischer, P., Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. MICCAI 2015. Lecture Notes in Computer Science(), vol 9351. Springer, Cham. https://doi.org/10.1007/978-3-319-24574-4_28.

Radiuk P. Applying 3D U-Net Architecture to the Task of Multi-Organ Segmentation in Computed Tomography. Applied Computer Systems. 2020;25(1): 43-50. https://doi.org/10.2478/acss-2020-0005

Vesal, S., Ravikumar, N., Maier, A. A 2D dilated residual U-Net for multi-organ segmentation in thoracic CT. arXiv preprint arXiv:1905.07710, 2019.

Xuetao Wang, Wanwei Jian, Bailin Zhang, Lin Zhu, Qiang He, Huaizhi Jin, Geng Yang, Chunya Cai, Haoyu Meng, Xiang Tan, Fei Li, Zhenhui Dai. Synthetic CT generation from cone-beam CT using deep-learning for breast adaptive radiotherapy. Journal of Radiation Research and Applied Sciences. 2022; 15(1):275-282. https://doi.org/10.1016/j.jrras.2022.03.009.

Zhou Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 2002; 13(4): 600-612. https://doi.org/10.1109/TIP.2003.819861.

Low DA, Harms WB, Mutic S, Purdy JA. A technique for the quantitative evaluation of dose distributions. Med Phys. 1998;25(5):656-661. https://doi.org/10.1118/1.598248

Downloads

Published

2024-05-05

Issue

Section

Scientific articles

How to Cite

Validation of cone beam tomographic images generated by deep learning neural networks for adaptive Radiotherapy. (2024). Revista De Física Médica, 25(1), 41-49. https://doi.org/10.37004/sefm/2024.25.1.003
Bookmark and Share

Similar Articles

61-70 of 101

You may also start an advanced similarity search for this article.