Implementación y validación de un protocolo de IGRT basado en imagen de kV de fluoroscopia y CBCT para el tratamiento de SBRT pulmonar

Autores/as

  • Cristina Ansón Servicio de Radiofísica y Protección Radiológica. Hospital Universitario La Princesa. Madrid.
  • Pablo Castro Tejero Servicio de Radiofísica y Protección Radiológica. Hospital Universitario La Princesa. Madrid.
  • David Hernández González Servicio de Radiofísica y Protección Radiológica. Hospital Universitario La Princesa. Madrid.
  • María Roch González Servicio de Radiofísica y Protección Radiológica. Hospital Universitario La Princesa. Madrid.
  • Aránzazu Valiente González Servicio de Oncología Radioterápica. Hospital Universitario La Princesa. Madrid.
  • Sara Martín Juárez Servicio de Oncología Radioterápica. Hospital Universitario La Princesa. Madrid.
  • Alberto Viñals Muñoz Servicio de Radiofísica y Protección Radiológica. Hospital Universitario La Princesa. Madrid.
  • Leopoldo Pérez González Servicio de Radiofísica y Protección Radiológica. Hospital Universitario La Princesa. Madrid.

DOI:

https://doi.org/10.37004/sefm/2019.20.2.003

Palabras clave:

Radioterapia guiada por imagen, movimiento respiratorio, desplazamiento intrafracción, radioterapia estereotáxica extracraneal

Resumen

El objetivo de este trabajo es describir nuestro protocolo de radioterapia guiada por imagen (IGRT) para tratamientos de radioterapia estereotáxica extracraneal (SBRT) en lesiones pulmonares, así como evaluar los resultados de la aplicación de este protocolo en una selección de 47 pacientes analizados retrospectivamente.

La adquisición de imágenes se realiza en un equipo de tomografía computerizada 4D (TC4D). Durante el tratamiento, mediante la técnica VMAT, se adquieren imágenes de tomografía con haz cónico (CBCT) antes y después de la sesión e imagen de fluoroscopia intrafracción, siempre que sea posible visualizar la lesión, para verificar la amplitud de movimiento y la posición del tumor.

En el 72% de los pacientes analizados fue posible realizar imagen de fluoroscopia, de los cuales un 71% verificó su correcto posicionamiento frente al 29% que necesitaron ser reposicionados mediante la adquisición de CBCT al menos en alguna de las fracciones. Los errores sistemáticos y aleatorios de los CBCT tras la sesión están por debajo de 1 mm, lo que valida el protocolo.

La fluoroscopia supone una herramienta útil, dependiendo del contraste de visualización, para verificar la posición del tumor. Además, en comparación con el CBCT, reduce el tiempo de tratamiento y minimiza la dosis. Combinada con CBCT, permite monitorizar la lesión durante el tratamiento.

Referencias

 1. Timmerman RD, Hu C, Michalski J, et al. Long-term results of RTOG 0236: a phase II trial of stereotactic body radiation therapy (SBRT) in the treatment of patients with medically inoperable stage I non-small cell lung cancer. Int J Radiat Oncol Biol Phys 2014;90(1):S30.

 2. Solda F, Lodge M, Ashley S, Whitington A, Goldstraw P, Brada M. Stereotactic radiotherapy (SABR) for the treatment of primary non-small cell lung cancer; systematic review and comparison with a surgical cohort. Radiother Oncol 2013;109(1):1-7.

 3. Senthi S, Lagerwaard FJ, Haasbeek CJ, Slotman BJ, Senan S. Patterns of disease recurrence after stereotactic ablative radiotherapy for early stage non-small-cell lung cancer: a retrospective analysis. Lancet Oncol 2012;13(8):802-9.

 4. Nguyen NP, Garland L, Welsh J, Hamilton R, Cohen D, Vinh-Hung V. Can stereotactic fractionated radiation therapy become the standard of care for early stage non-small cell lung carcinoma? Cancer Treat Rev 2008;34(8):719-27.

 5. Borst GR, Sonke JJ, Betgen A, Remeijer P, van Herk M, Lebesque JV. Kilovoltage cone-beam computed tomography setup measurements for lung cancer patients; first clinical results and comparison with electronic portalimaging device. Int J Radiat Oncol Biol Phys 2007;68(2):555-61.

 6. Chang J, Mageras GS, Yorke E, De Arruda F, Sillanpaa J, Rosenzweig KE, et al. Observation of interfractional variations in lung tumor position using respiratory gated and ungated megavoltage cone-beam computed tomography. Int J Radiat Oncol Biol Phys 2007;67(5):1548–58.

 7. International Commission on Radiation Units and Measurements. ICRU Report 62, Prescribing, recording and reporting photon beam therapy (supplement to ICRU Report 50). Bethesda: ICRU; 1999.

 8. Bradner E, Chetty I, Giaddui T, Xiao Y, Hug M. Motion Management Strategies and Technical Issues Associated with Stereotactic Body Radiotherapy of Thoracic and Upper Abdominal Tumors: A Review from NRG Oncology. Med Phys 2017;44(1):2595–612.

 9. Yu CX, Jaffray DA, Wong JW. The effects of intra-fraction organ motion on the delivery of dynamic intensity modulation. Phys Med Biol 1998;43:91–104.

10. Jiang SB, Pope C, Al Jarrah KM, Kung JH, Bortfeld T, Chen GT. An experimental investigation on intra-fractional organ motion effects in lung IMRT treatments. Phys Med Biol;2003;48:1773–84.

11. Court L, Wagar M, Berbeco R, Reisner A, Winey B, Schofield D, et al. Evaluation of the interplay effect when using RapidArc to treat targets moving in the cra niocaudal or right-left direction. Med Phys 406 2010;37:4–11.

12. Keall PJ, Mageras GS, Balter JM, Emery RS, Forster KM, Jiang SB, et al. The management of respiratory motion in radiation oncology report of AAPM Task Group 76. Med Phys 2006;33(10):3874–900.

13. Stieber V, Meeks S, Tomé WA, Timmerman R, Song DY, Solberg T, et al. Stereotactic body radiation therapy: The report of AAPM Task Group 101. Med Phys 2010;37(8):4078–101.

14. Fernández Letón P, Baños Capilla C, Gilabert JB, Delgado Rodríguez JM, De Blas Piñol R, Ortega JM, et al. Recomendaciones de la Sociedad Española de Física Médica (SEFM) sobre implementación y uso clínico de radioterapia estereotáxica extracraneal (SBRT). Rev Fis Med 2017;18(2):77–142.

15. Bradley JD, Nofal AN, El Naqa IM, Lu W, Liu J, Hubenschmidt J, et al. Comparison of helical, maximum intensity projection (MIP), and averaged intensity (AI) 4D CT imaging for stereotactic body radiation therapy (SBRT) planning in lung cancer. Radiother Oncol 2006;81(3):264–8.

16. International Commission on Radiation Units and Measurements. ICRU Report 83, Prescribing, recording and reporting photon-beam Intensity-Modulated Radiation Therapy (IMRT). Bethesda: ICRU; 2010.

17. Timmerman R, Abdulrahman R, Kavanagh BD, Meyer JL. Lung cancer: a model for implementing stereotactic body radiation therapy into practice. Front. Radiat. Ther. Oncol 2007;40:368–85.

18. Lagerwaard FJ, Senan S. Lung cancer: intensity-modulated radiation therapy, four dimensional imaging and mobility management. Front. Radiat. Ther. Oncol 2007;40:239–52.

19. Ekberg L, Holmberg O, Wittgren L, Bjelkengren G, Landberg T. What margins should be added to the clinical target volume in radiotherapy treatment planning for lung cancer? Radiother Oncol 1998;48:71-7.

20. Seppenwoolde Y, Shirato H, Kitamura K, et al. Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. Int J Radiat Oncol Biol Phys 2002;53(4):822-34.

21. Van Herk M. Errors and margins in radiotherapy. Semin Radiat Oncol 2004;14(1):52-64.

22. Erridge SC, Seppenwoolde Y, Muller SH, van Herk M, De Jaeger K, Belderbos JS, Boersma LJ, and Lebesque JV. Portal imaging to assess set-up errors, tumor motion and tumor shrinkage during conformal radiotherapy of non-small cell lung cancer. Radiother. Oncol 2003;66(1):75–85.

23. Sonke JJ, Lebesque J, van Herk M. Variability of Four-Dimensional Computed Tomography Patient Models. Int J Radiat Oncol Biol Phys 2008;70(2):590–8.

24. Sonke JJ, Zijp L, Remeijer P, van Herk M. Respiratory correlated cone beam CT. Med. Phys 2005;32(4):1176–86.

25. Keall PJ, Starkschall G, Shukla H, Forster KM, Ortiz V, Stevens CW, Vedam SS, George R, Guerrero T, Mohan R. Acquiring 4D thoracic CT scans using a multislice helical method. Phys. Med. Biol 2004;49(10):2053–67.

26. Benchetrit G. Breathing pattern in humans: Diversity and individuality. Respir. Physiol 2000;122(2-3):123–9.

27. George R, Vedam SS, Chung TD, Ramakrishnan V, Keall PJ. The application of the sinusoidal model to lung cancer patient respiratory motion. Med. Phys 2005;32(9):2850–61.

28. Kini VR, Vedam SS, Keall PJ, Patil S, Chen C, Mohan R. Patient training in respiratory-gated radiotherapy. Med. Dosim 2003;28(1):7–11.

29. Bouilhol G, Ayadi M, Rit S, Thengumpallil S, Vande-meulebroucke J, Claude L, et al. Is abdominal compression useful in lung stereotactic body radiation therapy? A 4DCT and dosimetric lobe-dependent study. Phys Med. 2013;29(4):333-40.

30. Bissonnette JP, Franks KN, Purdie TG, Moseley DJ, Sonke JJ, Jaffray DA, et al. Quantifying Interfraction and Intrafraction tumor motion in lung stereotactic body radiotherapy using respiration-correlated cone beam computed tomography. Int J Radiat Oncol. 2009;75:688–95.

31. De Ruysscher D, Faivre-Finn C, Moeller D, Nestle U, Hurkmans CW, Le Pechoux C et al. European Organization for Research and Treatment of Cancer (EORTC) recommendations for planning and delivery of high-dose, high precision radiotherapy for lung cancer. Radiotherapy and Oncology. 2017;124(1):1-10.

32. Hugo G, Vargas C, Liang J,Kestin L. Wong JW, Yan D. Changes in the respiratory pattern during radiotherapy for cancer in the lung. Radiother Oncol 2006;78(3):326–31.

33. Purdie TG, Moseley DJ, Bissonnette J-P, et al. Respiration correlated cone-beam computed tomography and 4DCT for evaluating target motion in stereotactic lung radiation therapy. Acta Oncol 2006;45:915–22.

34. McClelland JR, Hughes S, Modat M, et al. Inter-fraction variations in respiratory motion models. Phys.Med. Biol 2011;56(1):251–72.

35. Hugo GD, Liang J, Campbell J, Yan D. On-line target position localization in the presence of respiration: A comparison of two methods. Int. J. Radiat. Oncol., Biol., Phys 2007;69:1634–41.

36. Wang Z, Wu QJ, Marks LB, Larrier N, Yin FF. Cone-beam CT localization of internal target volumes for stereotactic body radiotherapy of lung lesions. Int. J. Radiat. Oncol., Biol., Phys 2007;69:1618–24.

37. Purdie TG, Bissonnette J-P, Franks K, et al. Cone-beam computed tomography for on-line image guidance of lung stereotactic radiotherapy: localization, verification, and intrafraction tumor position. Int. J. Radiat. Oncol. Biol. Phys 2007;68(1):243–52.

38. Brandner ED, Heron D, Wu A, Huq MS, Yue NJ, Chen H. Localizing moving targets and organs using motion-managed CTs. Med Dosim 2006;31(2):134–40.

39. Uematsu M, Shioda A, Suda A, Fukui T, Ozeki Y, Hama Y, Wong JR, Kusano S. Computed tomography-guided frameless stereotactic radiotherapy for stage I non-small cell lung cancer: A 5-year experience. Int. J. Radiat. Oncol., Biol., Phys 2001;51(3):666–70.

40. Lizuain MC, Capuz AB, Delgado JM, Crispín V, García S, Juan XJ, et al. Capítulo 7: Control de calidad de los equipos de IGRT basados en imágenes producidas por radiaciones ionizantes. ADI Servicios Editoriales. Recomendaciones para el control de calidad de equipos y técnicas de radioterapia guiada por la imagen (IGRT). 1 ed. SEFM; 2013;183-210.

41. Hugo GD, Grills IS, Wloch J, Yan D. Intrafraction Variation in Tumor Position during Stereotactic Body Radiotherapy for Lung Cancer. Int J Radiat Oncol 2008;72(1):S610.

42. Korreman SS, Persson G, Nygaard D, Brink C, Juhler-Nottrup T. Respiration-correlated image guidance is the most important radiotherapy motion management strategy for most lung cancer patients. Radiother. Oncol 2012;83(4):1338–43.

Descargas

Publicado

2019-11-29

Número

Sección

Artículos científicos

Cómo citar

Implementación y validación de un protocolo de IGRT basado en imagen de kV de fluoroscopia y CBCT para el tratamiento de SBRT pulmonar. (2019). Revista De Física Médica, 20(2), 23-32. https://doi.org/10.37004/sefm/2019.20.2.003

Artículos similares

61-70 de 177

También puede Iniciar una búsqueda de similitud avanzada para este artículo.