Procedimiento recomendado para la dosimetría de pacientes en terapia con radiofármacos que incluyen 177Lu

Autores/as

  • Pablo Minguez Gabiña Unidad de Protección Radiológica y Radiológica. Hospital Universitario de Cruces-Gurutzeta/Instituto de Investigación Sanitaria BioCruces Bizkaia. Barakaldo.
  • Nuria Carrasco Vela Servicio de Radiofisica y Protección Radiológica. Hospital Clínico Universitario de Valencia. Valencia.
  • Leticia Irazola Rosales Servicio de Radiofísica y Protección Radiológica. Centro de Investigaciones Biomédicas de La Rioja (CIBIR). Logroño.
  • Josep María Martí-Climent Servicio de Radiofísica y Protección Radiológica. Clínica Universidad de Navarra. Pamplona.
  • Luis Carlos Martínez Gómez Servicio de Radiofísica Hospitalaria. Hospital Universitario 12 de Octubre. Madrid.
  • Teresa Monserrat Fuentes Servicio de Radiofísica y Protección Radiológica. Hospital Universitario Central de Asturias. Oviedo.
  • Carlos Montes Fuentes Servicio de Radiofísica y Protección Radiológica. Complejo Asistencial Universitario de Salamanca. Salamanca.
  • Alfredo Montes Uruen Servicio de Radiofísica Hospitalaria. Hospital Universitario Puerta de Hierro Majadahonda. Madrid.
  • Raquel Barquero Sanz Servicio de Radiofísica y Protección Radiológica. Hospital Clínico Universitario de Valladolid, Valladolid.

DOI:

https://doi.org/10.37004/sefm/2024.25.2.003

Palabras clave:

[177Lu]Lu-DOTA-TATE, tumores neuroendocrinos, [177Lu]Lu-PSMA-617, cáncer de próstata metastásico resistente a la castración, dosimetría

Resumen

Actualmente los dos radiofármacos aprobados por la AEMPS que incluyen 177Lu son [177Lu]Lu-DOTA-TATE para el tratamiento de tumores neuroendocrinos y [177Lu]Lu-PSMA-617 para el tratamiento de cáncer de próstata metastásico resistente a la castración. El RD601/2019 establece que en las exposiciones médicas de pacientes debidas a tratamientos de radioterapia o de medicina nuclear, los volúmenes de planificación se planificarán individualmente y se verificará convenientemente su realización, teniendo en cuenta que las dosis de órganos sanos y tejidos fuera de los considerados de planificación deberán ser lo más bajas que sea razonablemente posible y estarán de acuerdo con el fin deseado del tratamiento. Sin embargo, para ambos radiofármacos el tratamiento se realiza administrando ciclos de 7.4 GBq del radiofármaco — 4 ciclos para [177Lu] Lu-DOTA-TATE y 6 ciclos para [177Lu]Lu-PSMA-617. Esto implica que los tratamientos no pueden planificarse, pero si al menos verificarse mediante dosimetría. El objeto del presente documento es proporcionar unos procedimientos estandarizados para la realización de dicha dosimetría en los tratamientos con los mencionados radiofármacos.

Referencias

1. Kondev FG. Nuclear data sheets for A=177. Nuclear data sheets. 2019;159:1-412.

2. Deepa S, Vijay Sai K, Gowrishankar R, Rao D, Venkataramaniah K. Precision electron-gamma spectroscopic measurements in the decay of 177Lu. Appl Radiat Isot. 2011;69(6):869-74. https://doi.org/10.1016/j.apradiso.2011.02.012

3. Hosono M, Ikebuchi H, Nakamura Y, Nakamura N, Yamada T, Yanagida S, et al. Manual on the proper use of lutetium-177-labeled somatostatin analogue (Lu-177-DOTA-TATE) injectable in radionuclide therapy (2nd ed.). Ann Nucl Med. 2018;32(3):217-35. https://doi.org/10.1007/s12149-018-1230-7

4. Schötzig U, Schrader H, Schönfeld E, Günther E, Klein R. Standardisation and decay data of 177Lu and 188Re. Appl Radiat Isot. 2001;55(1):89-96. https://doi.org/10.1016/s0969-8043(00)00362-6

5. Vogel WV, van der Marck SC, Versleijen MWJ. Challenges and future options for the production of lutetium-177. Eur J Nucl Med Mol Imaging. 2021;48(8):2329-35. https://doi.org/10.1007/s00259-021-05392-2

6. Gleisner KS, Brolin G, Sundlöv A, Mjekiqi E, Östlund K, Tennvall J, et al. Long-Term Retention of 177Lu/177mLu-DOTATATE in Patients Investigated by γ-Spectrometry and γ-Camera Imaging. J Nucl Med. 2015;56(7):976-84. https://doi.org/10.2967/jnumed.115.155390

7. Kwekkeboom DJ, Bakker WH, Kooij PP, Konijnenberg MW, Srinivasan A, Erion JL, et al. [177Lu-DOTAOTyr3]octreotate: comparison with [111In-DTPAo]octreotide in patients. Eur J Nucl Med. 2001;28(9):1319-25. https://doi.org/10.1007/s002590100574

8. Kwekkeboom DJ, Teunissen JJ, Bakker WH, Kooij PP, de Herder WW, Feelders RA, et al. Radiolabeled somatostatin analog [177Lu-DOTA0,Tyr3]octreotate in patients with endocrine gastroenteropancreatic tumors. J Clin Oncol. 2005;23(12):2754-62. https://doi.org/10.1200/JCO.2005.08.066

9. Strosberg J, El-Haddad G, Wolin E, Hendifar A, Yao J, Chasenet B, et al. Phase 3 Trial of 177Lu-Dotatate for Midgut Neuroendocrine Tumors. N Engl J Med. 2017;376(2):125-35. https://doi.org/10.1056/NEJMoa1607427

10. Mitjavila M, Jimenez-Fonseca P, Belló P, Pubul V, Percovich JC, Garcia-Burillo A, et al. Efficacy of [177Lu]Lu‑DOTATATE in metastatic neuroendocrine neoplasms of different locations: data from the SEPTRALU study. Eur J Nucl Med Mol Imaging. 2023;50(8):2486-500. https://doi.org/10.1007/s00259-023-06166-8

11. Sundlöv A, Sjögreen-Gleisner K, Svensson J, Ljungberg M, Olsson T, Bernhardt P, et al. Individualised 177 Lu-DOTATATE treatment of neuroendocrine tumours based on kidney dosimetry. Eur J Nucl Med Mol Imaging. 2017;44(9):1480-9. https://doi.org/10.1007/s00259-017-3678-4

12. Garske-Román U, Sandström M, Fröss Baron K, Lundin L, Hellman P, Welin S, et al. Prospective observational study of 177 Lu-DOTA-octreotate therapy in 200 patients with advanced metastasized neuroendocrine tumours (NETs): feasibility and impact of a dosimetry-guided study protocol on outcome and toxicity. Eur J Nucl Med Mol Imaging. 2018;45(6):970-88. https://doi.org/10.1007/s00259-018-3945-z

13. Del Prete M, Buteau FA, Arsenault F, Saighi N, Bouchard LO, Beaulieu A, et al. Personalized 177Luoctreotate peptide receptor radionuclide therapy of neuroendocrine tumours: a simulation study. Eur J Nucl Med Mol Imaging. 2019;46(3):728-42. https://doi.org/10.1007/s00259-018-4209-7

14. Sundlöv A, Gleisner KS, Tennvall J, Ljungberg M, Warfvinge CF, Holgersson K, et al. Phase II trial demonstrates the efficacy and safety of individualized, dosimetry-based 177Lu-DOTATATE treatment of NET patients. Eur J Nucl Med Mol Imaging. 2022;49(11):3830-40. https://doi.org/10.1007/s00259-022-05786-w

15. Zhang H, Koumna S, Pouliot F, Beauregard JM, Kolinsky M. PSMA Theranostics: Current Landscape and Future Outlook. Cancers (Basel). 2021;13(16). https://doi.org/10.3390/cancers13164023

16. Gourni E, Henriksen G. Metal-Based PSMA Radioligands. Molecules. 2017;22(4). https://doi.org/10.3390/molecules22040523

17. Jones W, Griffiths K, Barata PC, Paller CJ. PSMA Theranostics: Review of the Current Status of PSMA-Targeted Imaging and Radioligand Therapy. Cancers (Basel). 2020;12(6). https://doi.org/10.3390/cancers12061367

18. Yadav MP, Ballal S, Tripathi M, Damle NA, Sahoo RK, Seth A, et al. Post-therapeutic dosimetry of 177Lu-DKFZ-PSMA-617 in the treatment of patients with metastatic castration-resistant prostate cancer. Nucl Med Commun. 2017;38(1):91-8. https://doi.org/10.1097/MNM.0000000000000606

19. Yadav MP, Ballal S, Tripathi M, Damle NA, Sahoo RK, Seth A, et al. Lu-DKFZ-PSMA-617 therapy in metastatic castration resistant prostate cancer: safety, efficacy, and quality of life assessment. Eur J Nucl Med Mol Imaging. 2017;44(1):81-91. https://doi.org/10.1007/s00259-016-3481-7

20. Delker A, Fendler WP, Kratochwil C, Brunegraf A, Gosewisch A, Gildehaus FJ, et al. Dosimetry for (177)Lu-DKFZ-PSMA-617: a new radiopharmaceutical for the treatment of metastatic prostate cancer. Eur J Nucl Med Mol Imaging. 2016;43(1):42-51. https://doi.org/10.1007/s00259-015-3174-7

21. Sartor O, de Bono J, Chi KN, Fizazi K, Herrmann K, Rahbar K, et al. Lutetium-177-PSMA-617 for Metastatic Castration-Resistant Prostate Cancer. N Engl J Med. 2021;385(12):1091-103. https://doi.org/10.1056/NEJMoa2107322

22. Real Decreto 601/2019, de 18 de octubre, sobre justificación y optimización del uso de las radiaciones ionizantes para la protección radiológica de las personas con ocasión de exposiciones

médicas.

23. COUNCIL DIRECTIVE 2013/59/EURATOM of 5 December 2013 laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom. Official Journal of the European Union2014. p. 1-73.

24. Real Decreto 673/2023, de 18 de julio, por el que se establecen los criterios de calidad y seguridad de las unidades asistenciales de medicina nuclear.

25. Loevinger R, Budinger TF, Watson EE, Society of Nuclear Medicine (1953). Medical Internal Radiation Dose Committee. MIRD primer for absorbed dose calculations. Society of Nuclear Medicine; 1988:xiii, 128 p.

26. ICRU Report 96, Dosimetry-Guided Radiopharmaceutical Therapy. 2022.

27. Della Gala G, Bardiès M, Tipping J, Strigari L. Overview of commercial treatment planning systems for targeted radionuclide therapy. Phys Med. 2021;92:52-61. https://doi.org/10.1016/j.ejmp.2021.11.001

28. Mora-Ramirez E, Santoro L, Cassol E, Ocampo-Ramos JC, Clayton N, Kayal G, et al. Comparison of commercial dosimetric software platforms in patients treated with 177Lu-DOTATATE for peptide receptor radionuclide therapy. Med Phys. 2020;47(9):4602-15. https://doi.org/10.1002/mp.14375

29. Gear JI, Cox MG, Gustafsson J, Gleisner KS, Murray I, Glatting G, et al. EANM practical guidance on uncertainty analysis for molecular radiotherapy absorbed dose calculations. Eur J Nucl Med Mol Imaging. 2018;45(13):2456-74. https://doi.org/10.1007/s00259-018-4136-7

30. Loevinger R, Berman M. A formalism for calculation of absorbed dose from radionuclides. Phys Med Biol. 1968;13(2):205-17. https://doi.org/10.1088/0031-9155/13/2/306

31. Bolch WE, Eckerman KF, Sgouros G, Thomas SR. MIRD pamphlet No. 21: A generalized schema for radiopharmaceutical dosimetry standardization of nomenclature. J Nucl Med. 2009;50(3):477-84. https://doi.org/10.2967/jnumed.108.056036

32. Stabin MG, Sparks RB, Crowe E. OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med. 2005;46(6):1023-7.

33. Andersson M, Johansson L, Eckerman K, Mattsson S. IDAC-Dose 2.1, an internal dosimetry program for diagnostic nuclear medicine based on the ICRP adult reference voxel phantoms. EJNMMI Res. 2017;7(1):88. https://doi.org/10.1186/s13550-017-0339-3

34. Chauvin M, Borys D, Botta F, Bzowski P, Dabin J, Denis-Bacelar AM, et al. OpenDose: Open-Access Resource for Nuclear Medicine Dosimetry. J Nucl Med. 10 2020;61(10):1514-9. https://doi.org/10.2967/jnumed.119.240366

35. ICRP Publication 133: the ICRP computational framework for internal dose assessment for reference adults: specific absorbed fractions. Ann ICRP; 2016.

36. Sjögreen Gleisner K, Chouin N, Gabina PM, Cicone F, Gnesin S, Stokke C, et al. EANM dosimetry committee recommendations for dosimetry of 177Lu-labelled somatostatin-receptorand PSMA-targeting ligands. Eur J Nucl Med Mol Imaging. 2022;49:1778-809. https://doi.org/10.1007/s00259-022-05727-7

37. Snyder W, Ford M, Warner G, Watson S. MIRD pamphlet no. 11:S, absorbed dose per unit cumulated activity for selected radionuclides and organs. Society of Nuclear Medicine; 1975.

38. Amato E, Lizio D, Baldari S. Absorbed fractions for photons in ellipsoidal volumes. Phys Med Biol. 2009;54(20):N479-87. https://doi.org/10.1088/0031-9155/54/20/N02

39. Amato E, Lizio D, Baldari S. Absorbed fractions in ellipsoidal volumes for beta(-) radionuclides employed in internal radiotherapy. Phys Med Biol. 2009;54(13):4171-80. https://doi.org/10.1088/0031-9155/54/13/013

40. Lanconelli N, Pacilio M, Lo Meo S, Botta F, Dia AD, Torres Aroche LA, et al. A free database of radionuclide voxel S values for the dosimetry of nonuniform activity distributions. Phys Med Biol. 2012;57(2):517-33. https://doi.org/10.1088/0031-9155/57/2/517

41. Bolch WE, Bouchet LG, Robertson JS, Wessels BW, Siegel JA, Howell RW, et al. MIRD pamphlet No. 17: The dosimetry of nonuniform activity distributions--radionuclide S values at the voxel level. Medical Internal Radiation Dose Committee. J Nucl Med. 1999;40(1):11S-36S.

42. Ljungberg M, Sjögreen-Gleisner K. The accuracy of absorbed dose estimates in tumours determined by quantitative SPECT: a Monte Carlo study. Acta Oncol. 2011;50(6):981-9. https://doi.org/10.3109/0284186X.2011.584559

43. Wevrett J, Fenwick A, Scuffham J, Johansson L, Gear J, SSchlögl S, et al. Inter-comparison of quantitative imaging of lutetium-177 (177Lu) in European hospitals. EJNMMI Phys. 2018;5(1):17. https://doi.org/10.1186/s40658-018-0213-z

44. Tran-Gia J, Denis-Bacelar AM, Ferreira KM, Robinson AP, Calvert N, Fenwick AJ, et al. A multicentre and multi-national evaluation of the accuracy of quantitative Lu-177 SPECT/CT imaging performed within the MRTDosimetry project. EJNMMI Phys. 2021;8(1):55. https://doi.org/10.1186/s40658-021-00397-0

45. Protocolo de control de calidad de la instrumentación de Medicina Nuclear versión 2020. CREIN, Soluciones Integrales de Comunicación; 2020.

46. Saldarriaga Vargas C, Bauwens M, Pooters INA, Pommé S, Peters SMB, Segbers M, et al. An international multi-center investigation on the accuracy of radionuclide calibrators in nuclear medicine theragnostics. EJNMMI Phys. 2020;7(1):69. https://doi.org/10.1186/s40658-020-00338-3

47. Dominguez P, Escalada C, Ferrer N, García-Toraño E, Plaza R, Rodríguez C, et al. Protocolo para la calibracion y el uso de activimetros. Ciemat; 2003.

48. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671-5. https://doi.org/10.1038/nmeth.2089

49. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging. 2012;30(9):1323-41. https://doi.org/10.1016/j.mri.2012.05.001

50. Dewaraja YK, Frey EC, Sgouros G, Brill AB, Roberson P, Zanzonico PB, et al. MIRD pamphlet No. 23: quantitative SPECT for patient-specific 3-dimensional dosimetry in internal radionuclide therapy. J Nucl Med. 2012;53(8):1310-25. https://doi.org/10.2967/jnumed.111.100123

51. Ljungberg M, Celler A, Konijnenberg MW, Eckerman KF, Dewaraja YK, Sjögreen-Gleisner K. MIRD Pamphlet No. 26: Joint EANM/MIRD Guidelines for Quantitative 177Lu SPECT Applied for Dosimetry of Radiopharmaceutical Therapy. J Nucl Med. 2016;57(1):151-62. https://doi.org/10.2967/jnumed.115.159012

52. Ogawa K, Harata Y, Ichihara T, Kubo A, Hashimoto S. A practical method for position-dependent Compton-scatter correction in single photon emission CT. IEEE Trans Med Imaging. 1991;10(3):408-12. https://doi.org/10.1109/42.97591

53. Wevrett J, Fenwick A, Scuffham J, Johansson L, Gear J, SSchlögl S, et al. Inter-comparison of quantitative imaging of lutetium-177. EJNMMI Phys. 2018;5(1):17. https://doi.org/10.1186/s40658-018-0213-z

54. Tran-Gia J, Lassmann M. Optimizing Image Quantification for 177 Lu SPECT/CT Based on a 3D Printed 2-Compartment Kidney Phantom. J Nucl Med. 2018;59(4):616-24. https://doi.org/10.2967/jnumed.117.200170

55. Gear J, Chiesa C, Lassmann M, Mínguez Gabiña P, Tran-Gia J, Stokke C, Flux G, et al. EANM Dosimetry Committee series on standard operational procedures for internal dosimetry for 131I mIBG treatment of neuroendocrine tumours. EJNMMI Phys. 2020;7(1):15. https://doi.org/10.1186/s40658-020-0282-7

56. Marin G, Vanderlinden B, Karfis I, Guiot T, Wimana Z, Flamen P, et al. Accuracy and precision assessment for activity quantification in individualized dosimetry of 177Lu-DOTATATE therapy. EJNMMI Phys. 2017;4(1):7. https://doi.org/10.1186/s40658-017-0174-7

57. Finocchiaro D, Berenato S, Grassi E, Bertolini V, Castellani G, Lanconelli N, et al. Partial volume effect of SPECT images in PRRT with 177Lu labelled somatostatin analogues: A practical solution. Phys Med. 2019;57:153-9. https://doi.org/10.1016/j.ejmp.2018.12.029

58. Ilan E, Sandström M, Wassberg C, Sundin A, Garske–Román U, Eriksson B, et al. Dose response of pancreatic neuroendocrine tumors treated with peptide receptor radionuclide therapy using 177Lu-DOTATATE. J Nucl Med. 2015;56(2):177-82. https://doi.org/10.2967/jnumed.114.148437

59. Sundlöv A, Gustafsson J, Brolin G, Mortensen N, Hermann R, Bernhardt P, et al. Feasibility of simplifying renal dosimetry in 177Lu peptide receptor radionuclide therapy. EJNMMI Phys. 2018;5(1):12. https://doi.org/10.1186/s40658-018-0210-2

60. Robinson AP, Tipping J, Cullen DM, Hamilton D, Brown R, Flynn A, et al. Organ-specific SPECT activity calibration using 3D printed phantoms for molecular radiotherapy dosimetry. EJNMMI Phys. 2016;3(1):12. https://doi.org/10.1186/s40658-016-0148-1

61. Mínguez Gabiña P, Monserrat Fuertes T, Jauregui I, Del Amo C, Rodeño Ortiz de Zarate E, Gustafsson J. Activity recovery for differently shaped objects in quantitative SPECT. Phys Med Biol. 2023;68(12). https://doi.org/10.1088/1361-6560/acd982

62. Ramonaheng K, van Staden JA, du Raan H. The effect of calibration factors and recovery coefficients on 177Lu SPECT activity quantification accuracy: a Monte Carlo study. EJNMMI Phys. 2021;8(1):27. https://doi.org/10.1186/s40658-021-00365-8

63. Uribe CF, Esquinas PL, Gonzalez M, Zhao W, Tanguay J, Celler A. Deadtime effects in quantification of 177Lu activity for radionuclide therapy. EJNMMI Phys. 2018;5(1):2. https://doi.org/10.1186/s40658-017-0202-7

64. Koral KF, Zasadny KR, Ackermann RJ, Ficaro EP. Deadtime correction for two multihead Anger cameras in 131I dual-energy-window-acquisition mode. Med Phys. 1998;25(1):85-91. https://doi.org/10.1118/1.598162

65. Silosky M, Johnson V, Beasley C, Kappadath SC. Characterization of the count rate performance of modern gamma cameras. Med Phys. 2013;40(3):032502. https://doi.org/10.1118/1.4792297

66. Desy A, Bouvet GF, Lafrenière N, Zamanian A, Després P, Beauregard JM. Impact of the dead-time correction method on quantitative 177Lu-SPECT (QSPECT) and dosimetry during radiopharmaceutical therapy. EJNMMI Phys. 2022;9(1):54. https://doi.org/10.1186/s40658-022-00484-w

67. Siegel JA, Thomas SR, Stubbs JB, Stabin MG, Hays MT, Koral KF, et al. MIRD pamphlet no. 16: Techniques for quantitative radiopharmaceutical biodistribution data acquisition and analysis for use in human radiation dose estimates. J Nucl Med. 1999;40(2):37S-61S.

68. Pacilio M, Cassano B, Chiesa C, Giancola S, Ferrari M, Pettinato C, et al. The Italian multicentre dosimetric study for lesion dosimetry in 223 Ra therapy of bone metastases: Calibration protocol of gamma cameras and patient eligibility criteria. Phys Med. 2016;32(12):1731-7. https://doi.org/10.1016/j.ejmp.2016.09.013

69. Ljungberg M, Sjögreen Gleisner K. 3-D Image-based dosimetry in radionuclide therapy. IEEE Trans Radiat Plasma Med Sci. 2018;2(6):527-40.

70. Larsson M, Bernhardt P, Svensson JB, Wängberg B, Ahlman H, Forssell-Aronsson E. Estimation of absorbed dose to the kidneys in patients after treatment with 177Lu-octreotate: comparison between methods based on planar scintigraphy. EJNMMI Res. 2012;2(1):49. https://doi.org/10.1186/2191-219X-2-49

71. Hindorf C, Glatting G, Chiesa C, Lindén O, Flux G, Committee ED. EANM Dosimetry Committee guidelines for bone marrow and whole-body dosimetry. Eur J Nucl Med Mol Imaging. 2010;37(6):1238-50. https://doi.org/10.1007/s00259-010-1422-4

72. Sandström M, Garske-Román U, Granberg D, Johansson S, Widström C,cEriksson B, et al. Individualized dosimetry of kidney and bone marrow in patients undergoing 177Lu-DOTA-octreotate treatment. J Nucl Med. 2013;54(1):33-41. https://doi.org/10.2967/jnumed.112.107524

73. Hemmingsson J, Svensson J, Hallqvist A, Smits K, Johanson V, Bernhardt P. Specific Uptake in the Bone Marrow Causes High Absorbed Red Marrow Doses During [177Lu]Lu-DOTATATE Treatment. J Nucl Med. 2023. https://doi.org/10.2967/jnumed.123.265484

74. Hagmarker L, Svensson J, Rydén T, van Essen M, Sundlöv A, Gleisner KS, et al. Bone Marrow Absorbed Doses and Correlations with Hematologic Response During 177Lu-DOTATATE Treatments Are Influenced by Image-Based Dosimetry Method and Presence of Skeletal Metastases. J Nucl Med. 2019;60(10):1406-13. https://doi.

org/10.2967/jnumed.118.225235

75. Gosewisch A, Delker A, Tattenberg S, Ilhan H, Todica A, Brosch J, et al. Patient-specific image-based bone marrow dosimetry in Lu-177-[DOTA0,Tyr3]-Octreotate and Lu-177-DKFZ-PSMA-617 therapy: investigation of a new hybrid image approach. EJNMMI Res. 2018;8(1):76. https://doi.org/10.1186/s13550-018-0427-z

76. Vallot D, Brillouet S, Pondard S, Vija L, Texier JS, Dierickx L, et al. Impact of different models based on blood samples and images for bone marrow dosimetry after 177Lu‑labeled somatostatin‑receptor

therapy. EJNMMI Phys. 2024;11(1):32. https://doi.org/10.1186/s40658-024-00615-5

77. Grob D, Privé BM, Muselaers CHJ, Mehra N, Nagarajah J, Konijnenberg MW, et al. Bone marrow dosimetry in low volume mHSPC patients receiving Lu-177-PSMA therapy using SPECT/CT. EJNMMI Phys. 2024;11(1):34. https://doi.org/10.1186/s40658-024-00636-0

78. Blakkisrud J, Peterson AB, Wildermann SJ, Kingkiner G, Wong KK, Wang C, et al. SPECT/CT Image-Derived Absorbed Dose to Red Marrow Correlates with Hematologic Toxicity in Patients Treated with [177Lu]Lu-DOTATATE. J Nucl Med. 2024;65(5):753-60. https://doi.org/10.2967/jnumed.123.266843

79. Sanders JC, Kuwert T, Hornegger J, Ritt P. Quantitative SPECT/CT Imaging of (177)Lu with In Vivo Validation in Patients Undergoing Peptide Receptor Radionuclide Therapy. Mol Imaging Biol. 2015;17(4):585-93. https://doi.org/10.1007/s11307-014-0806-4

80. Garkavij M, Nickel M, Sjögreen-Gleisner K, Ljungberg M, Ohlsson T, Wingårdh K, et al. 177Lu-[DOTA0,Tyr3] octreotate therapy in patients with disseminated neuroendocrine tumors: Analysis of dosimetry with impact on future therapeutic strategy. Cancer. 2010;116(4 Suppl):1084-92. https://doi.org/10.1002/cncr.24796

81. Hagmarker L, Svensson J, Rydén T, Gjertsson P, Bernhardt P. Segmentation of Whole-Body Images into Two Compartments in Model for Bone Marrow Dosimetry Increases the Correlation with Hematological Response in. Cancer Biother Radiopharm. 2017;32(9):335-43. https://doi.org/10.1089/cbr.2017.2317

82. Svensson J, Rydén T, Hagmarker L, Hemmingsson J, Wängberg B, Bernhardt P. A novel planar image-based

method for bone marrow dosimetry in (177)Lu-DOTATATE treatment correlates with haematological toxicity. EJNMMI Phys. 2016;3(1):21. https://doi.org/10.1186/s40658-016-0157-0

83. Kabasakal L, AbuQbeitah M, Aygün A, Yeyin N, Ocak M, Demirci E, et al. Pre-therapeutic dosimetry of normal organs and tissues of (177)Lu-PSMA-617 prostate-specific membrane antigen (PSMA) inhibitor in patients with castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging. 2015;42(13):1976-83. https://doi.org/10.1007/s00259-015-3125-3

84. Kratochwil C, Giesel FL, Stefanova M, Benešová M, Bronzel M, Afshar-Oromieh A, et al. PSMA-Targeted Radionuclide Therapy of Metastatic Castration-Resistant Prostate Cancer with 177Lu-Labeled PSMA-617. J Nucl Med. 2016;57(8):1170-6. https://doi.org/10.2967/jnumed.115.171397

85. Rydén T, Van Essen M, Marin I, Svensson J, Bernhardt P. Deep-Learning Generation of Synthetic Intermediate Projections Improves 177Lu SPECT Images Reconstructed with Sparsely Acquired Projections. J Nucl Med. 2021;62(4):528-35. https://doi.org/10.2967/jnumed.120.245548

86. Grimes J, Celler A, Shcherbinin S, Piwowarska-Bilska H, Birkenfeld B. The accuracy and reproducibility of SPECT target volumes and activities estimated using an iterative adaptive thresholding technique. Nucl Med Commun. 2012;33(12):1254-66. https://doi.org/10.1097/MNM.0b013e3283598395

87. Otsu N. A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern. 1979;SMC-9(1):62-6.

88. Gustafsson J, Sundlöv A, Sjögreen Gleisner K. SPECT image segmentation for estimation of tumour volume and activity concentration in 177Lu-DOTATATE radionuclide therapy. EJNMMI Res. 2017;7(1):18. https://doi.org/10.1186/s13550-017-0262-7

89. Jackson P, Hardcastle N, Dawe N, Kron T, Hofman MS, Hicks RJ. Deep Learning Renal Segmentation for Fully Automated Radiation Dose Estimation in Unsealed Source Therapy. Front Oncol. 2018;8:215. https://doi.org/10.3389/fonc.2018.00215

90. Sandström M, Garske U, Granberg D, Sundin A, Lundqvist H. Individualized dosimetry in patients undergoing therapy with (177)Lu-DOTA-D-Phe (1)-Tyr (3)-octreotate. Eur J Nucl Med Mol Imaging. 2010;37(2):212-25. https://doi.org/10.1007/s00259-009-1216-8

91. Koral KF, Zasadny KR, Kessler ML, Luo JQ, Buchbinder SF, Kaminski MS, et al. CT-SPECT fusion plus conjugate views for determining dosimetry in iodine-131-monoclonal antibody therapy of lymphoma patients. J Nucl Med. 1994;35(10):1714-20.

92. Fleming JS. A technique for the absolute measurement of activity using a gamma camera and computer. Phys Med Biol. 1979;24(1):176-80. https://doi.org/10.1088/0031-9155/24/1/017

93. Buijs WC, Siegel JA, Boerman OC, Corstens FH. Absolute organ activity estimated by five different methods of background correction. J Nucl Med. 1998;39(12):2167-72.

94. Minarik D, Sjögreen K, Ljungberg M. A new method to obtain transmission images for planar whole-body activity quantification. Cancer Biother Radiopharm. 2005;20(1):72-6. https://doi.org/10.1089/cbr.2005.20.72

95. Gleisner KS, Ljungberg M. Patient-specific whole-body attenuation correction maps from a CT system for conjugate-view-based activity quantification: method development and evaluation. Cancer Biother Radiopharm. 2012;27(10):652-64. https://doi.org/10.1089/cbr.2011.1082

96. Kinahan PE, Alessio AM, Fessler JA. Dual energy CT attenuation correction methods for quantitative assessment of response to cancer therapy with PET/CT imaging. Technol Cancer Res Treat. 2006;5(4):319-27. https://doi.org/10.1177/153303460600500403

97. Roth D, Gustafsson J, Sundlöv A, Sjögreen Gleisner K. A method for tumor dosimetry based on hybrid planar-SPECT/CT images and semiautomatic segmentation. Med Phys. 2018;45(11):5004-18. https://doi.org/10.1002/mp.13178

98. Eberlein U, Nowak C, Bluemel C, Buck AK, Werner RA, Scherthan H, et al. DNA damage in blood lymphocytes in patients after (177)Lu peptide receptor radionuclide therapy. Eur J Nucl Med Mol Imaging. 2015;42(11):1739-49. https://doi.org/10.1007/s00259-015-3083-9

99. Sundlöv A, Sjögreen-Gleisner K, Tennvall J, Dahl L, Svensson J, Åkesson A, et al. Pituitary Function after High-Dose 177Lu-DOTATATE Therapy and Long-Term Follow-Up. Neuroendocrinology. 2021;111(4):344-53. https://doi.org/10.1159/000507761

100. Huizing DMV, de Wit-van der Veen BJ, Verheij M, Stokkel MPM. Dosimetry methods and clinical applications in peptide receptor radionuclide therapy for neuroendocrine tumours: a literature review. EJNMMI Res. 2018;8(1):89. https://doi.org/10.1186/s13550-018-0443-z

101. Jentzen W, Freudenberg L, Eising EG, Sonnenschein W, Knust J, Bockisch A. Optimized 124I PET dosimetry protocol for radioiodine therapy of differentiated thyroid cancer. J Nucl Med. 2008;49(6):1017-23. https://doi.org/10.2967/jnumed.107.047159

102. Kurth J, Krause BJ, Schwarzenböck SM, Stegger L, Schäfers M, Rahbar K. External radiation exposure, excretion, and effective half-life in 177 Lu-PSMA-targeted therapies. EJNMMI Res. 2018;8(1):32. https://doi.org/10.1186/s13550-018-0386-4

103. Kabasakal L, Toklu T, Yeyin N, Demirci E, Abuqbeitah E, Ocak M, et al. Lu-177-PSMA-617 Prostate-Specific Membrane Antigen Inhibitor Therapy in Patients with Castration-Resistant Prostate Cancer: Stability, Bio-distribution and Dosimetry. Mol Imaging Radionucl Ther. 2017;26(2):62-8. https://doi.org/10.4274/mirt.08760

104. Marin G, Vanderlinden B, Karfis I, Guiot T, Wimana Z, Reynaert N, et al. A dosimetry procedure for organs-at-risk in 177Lu peptide receptor radionuclide therapy of patients with neuroendocrine tumours. Phys Med. 2018;56:41-9. https://doi.org/10.1016/j.ejmp.2018.11.001

105. Bergsma H, Konijnenberg MW, van der Zwan WA, Kam BLR, Teunissen JJM, Kooij PP, et al. Nephrotoxicity after PRRT with (177)Lu-DOTA-octreotate. Eur J Nucl Med Mol Imaging. 2016;43(10):1802-11. https://doi.org/10.1007/s00259-016-3382-9

106. Uijen MJM, Privé BM, van Herpen CML, Westdorp H, van Gemert WA, de Bakker M, et al. Kidney absorbed radiation doses for [177Lu]Lu-PSMA-617 and [177Lu]Lu-PSMA-I&T determined by 3D clinical dosimetry. Nucl Med Commun. 2023;44(4):270-5. https://doi.org/10.1097/MNM.0000000000001658

107. Peters SMB, Privé BM, de Bakker M, de Lange F, Jentzen W, Eek A, et al. Intra-therapeutic dosimetry of [ 177 Lu]Lu-PSMA-617 in low-volume hormone-sensitive metastatic prostate cancer patients and correlation with treatment outcome. Eur J Nucl Med Mol Imaging. 2022;49(2):460-9. https://doi.org/10.1007/s00259-021-05471-4

108. Wehrmann C, Senftleben S, Zachert C, Müller D, Baum RP. Results of individual patient dosimetry in peptide receptor radionuclide therapy with 177Lu DOTA-TATE and 177Lu DOTA-NOC. Cancer Biother Radiopharm. 2007;22(3):406-16. https://doi.org/10.1089/cbr.2006.325

109. Roth D, Gustafsson J, Warfvinge CF, Sundlöv A, Åkesson A, Tennvall J, et al. Dosimetric Quantities in Neuroendocrine Tumors over Treatment Cycles with. J Nucl Med. 2022;63(3):399-405. https://doi.org/10.2967/jnumed.121.262069

110. Hänscheid H, Lapa C, Buck AK, Lassmann M, Werner RA. Dose Mapping After Endoradiotherapy with 177Lu-DOTATATE/DOTATOC by a Single Measurement After 4 Days. J Nucl Med. 2018;59(1):75-81. https://doi.org/10.2967/jnumed.117.193706

111. Willowson KP, Eslick E, Ryu H, Poon A, Bernard EJ, Bailey DL. Feasibility and accuracy of single time point imaging for renal dosimetry following 177Lu-DOTATATE (‘Lutate’) therapy. EJNMMI Phys. 2018;5(1):33. https://doi.org/10.1186/s40658-018-0232-9

112. Hou X, Brosch J, Uribe C, Desy A, Böning G, Beauregar JM, et al. Feasibility of Single-Time-Point Dosimetry for Radiopharmaceutical Therapies. J Nucl Med. 2021;62(7):1006-11. https://doi.org/10.2967/jnumed.120.254656

113. Beykan S, Tran-Gia J, Borup Jensen S, Lassmann M. Is a single late SPECT/CT based kidney 177Lu-dosimetry superior to hybrid dosimetry with sequential multiple time-point whole-body planar scans in combination with an early SPECT/CT? Phys Med. 2022;100:39-50. https://doi.org/10.1016/j.ejmp.2022.06.002

114. Jackson PA, Hofman MS, Hicks RJ, Scalzo M, Violet J. Radiation Dosimetry in (177)Lu-PSMA-617 therapy using a single posttreatment SPECT/CT scan: a novel methodology to generate timeand tissue-specific dose factors. J Nucl Med. 2020;61(7):1030-6. https://doi.org/10.2967/jnumed.119.233411

115. Gustafsson J, Taprogge J. Theoretical aspects on the use of single-time-point dosimetry for radionuclide therapy. Phys Med Biol. 2022;67(2). https://doi.org/10.1088/1361-6560/ac46e0

116. Garske U, Sandström M, Johansson S, Sundin A, Granberg D, Eriksson B, et al. Minor changes in effective half-life during fractionated 177Lu-octreotate therapy. Acta Oncol. 2012;51(1):86-96. https://doi.org/10.3109/0284186X.2011.618511

117. ICRP Publication 107: Nuclear decay data for dosimetric calculations. Ann ICRP; 2008.

118. ICRP Publication 89: Basic anatomical and physiological data for use in radiological protection reference values. Ann ICRP; 2002.

119. ICRP publication 110: Adult reference computational phantoms. Ann ICRP; 2009.

120. Hohberg M, Eschner W, Schmidt M, Dietlein M, Kobe C, Fischer T, et al. Lacrimal Glands May Represent Organs at Risk for Radionuclide Therapy of Prostate Cancer with [(177)Lu]DKFZ-PSMA-617. Mol Imaging Biol. 2016;18(3):437-45. https://doi.org/10.1007/s11307-016-0942-0

121. Bukhari AA, Basheer NA, Joharjy HI. Age, gender, and interracial variability of normal lacrimal gland volume using MRI. Ophthalmic Plast Reconstr Surg. 2014;30(5):388-91. https://doi.org/10.1097/IOP.0000000000000117

122. Dieudonné A, Hobbs RF, Lebtahi R, Maurel F, Baechler S, Wahl RL, et al. Study of the impact of tissue density heterogeneities on 3-dimensional abdominal dosimetry: comparison between dose kernel convolution and direct Monte Carlo methods. J Nucl Med. 2013;54(2):236-43. https://doi.org/10.2967/jnumed.112.105825

123. Stabin MG, Siegel JA, Sparks RB, Eckerman KF, Breitz HB. Contribution to red marrow absorbed dose from total body activity: a correction to the MIRD method. J Nucl Med. Mar 2001;42(3):492-8.

124. Traino AC, Ferrari M, Cremonesi M, Stabin MG. Influence of total-body mass on the scaling of S-factors for patient-specific, blood-based red-marrow dosimetry. Phys Med Biol. 2007;52(17):5231-48. https://doi.org/10.1088/0031-9155/52/17/009

125. Bodei L, Mueller-Brand J, Baum RP, Pavel ME, Baum RP, Hörsch D, et al. The joint IAEA, EANM, and SNMMI practical guidance on peptide receptor radionuclide therapy (PRRNT) in neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2013;40(5):800-16. https://doi.org/10.1007/s00259-012-2330-6

126. Kratochwil C, Fendler WP, Eiber M, Baum R, Bozkurt MF, Czernin J, et al. EANM procedure guidelines for radionuclide therapy with (177)Lu-labelled PSMA-ligands (177Lu-PSMA-RLT). Eur J Nucl Med Mol Imaging. 2019;46(12):2536-44. https://doi.org/10.1007/s00259-019-04485-3

127. Fendler WP, Reinhardt S, Ilhan H, et al. Preliminary experience with dosimetry, response and patient reported outcome after 177Lu-PSMA-617 therapy for metastatic castration-resistant prostate cancer. Oncotarget. Jan 10 2017;8(2):3581-3590. doi:10.18632/oncotarget.12240

128. Guerriero F, Ferrari ME, Botta F, et al. Kidney dosimetry in 177Lu and 90Y peptide receptor radionuclide therapy: influence of image timing, time-activity integration method, and risk factors. Biomed Res Int. 2013;2013:935351. doi:10.1155/2013/935351

129. Scarpa L, Buxbaum S, Kendler D, et al. The (68)Ga/(177)Lu theragnostic concept in PSMA targeting of castration-resistant prostate cancer: correlation of SUVmax values and absorbed dose estimates. Eur J Nucl Med Mol Imaging. May 2017;44(5):788-800. doi:10.1007/s00259-016-3609-9

130. Violet J, Jackson P, Ferdinandus J, et al. Dosimetry of Lu-177 PSMA-617 in metastatic castration- resistant prostate cancer: correlations between pre-therapeutic im- aging and “whole body” tumor dosimetry with treatment outcomes. J Nucl Med. 04 2019;60(4):517-523. doi:10.2967/jnumed.118.219352

131. Sabet A, Ezziddin K, Pape UF, et al. Accurate assessment of long-term nephrotoxicity after peptide receptor radionuclide therapy with (177)Lu-octreotate. Eur J Nucl Med Mol Imaging. Mar 2014;41(3):505-10. doi:10.1007/s00259-013-2601-x

132. Schäfer H, Mayr S, Büttner-Herold M, et al. Extensive 177Lu-PSMA Radioligand Therapy Can Lead to Radiation Nephropathy with a Renal Thrombotic Microangiopathy–like Picture. Eur Urol. Jun 07 2022;doi:10.1016/j.eururo.2022.05.025

133. Emami B, Lyman J, Brown, et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys. 1991;15(21(1)):109-122.

134. Cassady JR. Clinical radiation nephropathy. Int J Radiat Oncol Biol Phys. Mar 30 1995;31(5):1249-56. doi:10.1016/0360-3016(94)00428-N

135. Fowler JF. The linear-quadratic formula and progress in fractionated radiotherapy. Br J Radiol. Aug 1989;62(740):679-94. doi:10.1259/0007-1285-62-740-679

136. Forrer F, Krenning EP, Kooij PP, et al. Bone marrow dosimetry in peptide receptor radionuclide therapy with [177Lu-DOTA(0),Tyr(3)]octreotate. Eur J Nucl Med Mol Imaging. Jul 2009;36(7):1138-46. doi:10.1007/s00259-009-1072-6

137. Denoyer D, Lobachevsky P, Jackson P, Thompson M, Martin OA, Hicks RJ. Analysis of 177Lu-DOTA-octreotate therapy-induced DNA damage in peripheral blood lymphocytes of patients with neuroendocrine tumors. J Nucl Med. Apr 2015;56(4):505-11. doi:10.2967/jnumed.114.145581

138. Sarnelli A, Belli ML, Di Iorio V, et al. Dosimetry of 177Lu-PSMA-617 after mannitol infusion and glutamate tablet administration: preliminary results of EUDRACT/RSO 2016-002732-32 IRST Protocol. Molecules. Feb 11 2019;24(3)doi:10.3390/molecules24030621

139. Gosewisch A, Ilhan H, Tattenberg S, et al. 3D Monte Carlo bone marrow dosimetry for Lu-177-PSMA therapy with guidance of non-invasive 3D localization of active bone marrow via Tc-99m-anti-granulocyte antibody SPECT/CT. EJNMMI Res. Aug 14 2019;9(1):76. doi:10.1186/s13550-019-0548-z

140. Bodei L, Kidd M, Paganelli G, et al. Long-term tolerability of PRRT in 807 patients with neuroendocrine tumours: the value and limitations of clinical factors. Eur J Nucl Med Mol Imaging. Jan 2015;42(1):5-19. doi:10.1007/s00259-014-2893-5

141. Cremonesi M, Ferrari ME, Bodei L, et al. Correlation of dose with toxicity and tumour response to 90Y- and 177Lu-PRRT provides the basis for optimization through individualized treatment planning. Eur J Nucl Med Mol Imaging. 12 2018;45(13):2426-2441. doi:10.1007/s00259-018-4044-x

142. Emmett L, Willowson K, Violet J, Shin J, Blanksby A, Lee J. Lutetium 177-PSMA radionuclide therapy for men with prostate cancer: a review of the current literature and discussion of practical aspects of therapy. J Med Radiat Sci. Mar 2017;64(1):52-60. doi:10.1002/jmrs.227

143. Konings AW, Coppes RP, Vissink A. On the mechanism of salivary gland radiosensitivity. Int J Radiat Oncol Biol Phys. Jul 15 2005;62(4):1187-94. doi:10.1016/j.ijrobp.2004.12.051

144. Heynickx N, Herrmann K, Vermeulen K, Baatout S, Aerts A. The salivary glands as a dose limiting organ of PSMA- targeted radionuclide therapy: A review of the lessons learnt so far. Nucl Med Biol. 2021 Jul-Aug 2021;98-99:30-39. doi:10.1016/j.nucmedbio.2021.04.003

145. Hofman MS, Violet J, Hicks RJ, et al. [177Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): a single-centre, single-arm, phase 2 study. Lancet Oncol. 06 2018;19(6):825-833. doi:10.1016/S1470-2045(18)30198-0

146. Okamoto S, Thieme A, Allmann J, et al. Radiation Dosimetry for (177)Lu-PSMA I&T in metastatic castration-resistant prostate cancer: absorbed dose in normal organs and tumor lesions. J Nucl Med. 03 2017;58(3):445-450. doi:10.2967/jnumed.116.178483

147. Hey J, Setz J, Gerlach R, et al. Parotid gland-recovery after radiotherapy in the head and neck region--36 months follow-up of a prospective clinical study. Radiat Oncol. Sep 27 2011;6:125. doi:10.1186/1748-717X-6-125

148. Deasy JO, Moiseenko V, Marks L, Chao KS, Nam J, Eisbruch A. Radiotherapy dose-volume effects on salivary gland function. Int J Radiat Oncol Biol Phys. Mar 01 2010;76(3 Suppl):S58-63. doi:10.1016/j.ijrobp.2009.06.090

149. Lambrecht M, Eekers DBP, Alapetite C, et al. Radiation dose constraints for organs at risk in neuro-oncology; the European Particle Therapy Network consensus. Radiother Oncol. 07 2018;128(1):26-36. doi:10.1016/j.radonc.2018.05.001

150. Jahn U, Ilan E, Sandström M, Lubberink M, Garske-Román U, Sundin A. Peptide Receptor Radionuclide Therapy (PRRT) with (177)Lu-DOTATATE; differences in tumor dosimetry, vascularity and lesion metrics in pancreatic and small intestinal neuroendocrine neoplasms. Cancers (Basel). Feb 25 2021;13(5)doi:10.3390/cancers13050962

151. Kupitz D, Wetz C, Wissel H, et al. Software-assisted dosimetry in peptide receptor radionuclide therapy with 177Lutetium-DOTATATE for various imaging scenarios. PLoS One. 2017;12(11):e0187570. doi:10.1371/journal.pone.0187570

152. Baum RP, Kulkarni HR, Schuchardt C, et al. 177Lu-Labeled Prostate-Specific Membrane Antigen Radioligand Therapy of Metastatic Castration-Resistant Prostate Cancer: Safety and Efficacy. J Nucl Med. 07 2016;57(7):1006-13. doi:10.2967/jnumed.115.168443

153. Rudisile S, Gosewisch A, Wenter V, et al. Salvage PRRT with metastatic neuroendocrine tumor (NET): dosimetry, toxicity, efficacy, and survival. BMC Cancer. Aug 08 2019;19(1):788. doi:10.1186/s12885-019-6000-y

154. Kristiansen J. The Guide to expression of uncertainty in measurement approach for estimating uncertainty: an appraisal. Clin Chem. Nov 2003;49(11):1822-9. doi:10.1373/clinchem.2003.021469

155. Hunter J. Matplotlib: a 2D Graphics Environment. Computing in Science & Engineering. 2007;9:90-95.

156. Monserrat T, Peinado M, Montenegro N, Álvarez D, Herrero J, Bruzos D. Development and verification of a software tool to calculate absorbed doses at the voxel level in molecular radiotherapy treatments. Eur J Nucl Med Mol Imaging. 2019;46((Suppl 1):S479):(Suppl 1):S479.

157. Uribe C, Peterson A, Van B, et al. An International Study of Factors Affecting Variability of Dosimetry Calculations, Part 1: Design and Early Results of the SNMMI Dosimetry Challenge. J Nucl Med. Dec 2021;62(Suppl 3):36S-47S. doi:10.2967/jnumed.121.262748

158. Brosch-Lenz J, Ke S, Wang H, et al. An International Study of Factors Affecting Variability of Dosimetry Calculations, Part 2: Overall Variabilities in Absorbed Dose. J Nucl Med. Jul 2023;64(7):1109-1116. doi:10.2967/jnumed.122.265094

159. Cristy M, Eckerman KF. Specific absorbed fractions of energy at various ages from internal photon sources.

160. Stabin MG, Siegel JA. RADAR Dose Estimate Report: A Compendium of Radiopharmaceutical Dose Estimates Based on OLINDA/EXM Version 2.0. J Nucl Med. Jan 2018;59(1):154-160. doi:10.2967/jnumed.117.196261

161. Stabin MG, Watson EE, Cristy M, et al. Mathematical models and specific absorbed fractions of photon energy in the nonpregnant adult female and at the end of each trimester of pregnancy. 1995.

162. Huizing DMV, Peters SMB, Versleijen MWJ, et al. A head-to-head comparison between two commercial software packages for hybrid dosimetry after peptide receptor radionuclide therapy. EJNMMI Phys. Jun 01 2020;7(1):36. doi:10.1186/s40658-020-00308-9

163. Santoro L, Pitalot L, Trauchessec D, et al. Clinical implementation of PLANET® Dose for dosimetric assessment after [177Lu]Lu-DOTA-TATE: comparison with Dosimetry Toolkit® and OLINDA/EXM® V1.0. EJNMMI Res. Jan 04 2021;11(1):1. doi:10.1186/s13550-020-00737-8

164. Madsen MT, Menda Y, O'Dorisio TM, O'Dorisio MS. Technical Note: Single time point dose estimate for exponential clearance. Med Phys. May 2018;45(5):2318-2324. doi:10.1002/mp.12886

Descargas

Publicado

2024-11-04

Número

Sección

Informes

Cómo citar

Procedimiento recomendado para la dosimetría de pacientes en terapia con radiofármacos que incluyen 177Lu. (2024). Revista De Física Médica, 25(2), 34-78. https://doi.org/10.37004/sefm/2024.25.2.003

Artículos similares

151-160 de 251

También puede Iniciar una búsqueda de similitud avanzada para este artículo.