Treatment of medulloblastoma: comparison between volumetric modulated arc therapy and three-dimensional conformal radiation therapy
DOI:
https://doi.org/10.37004/sefm/2019.20.2.004Keywords:
Medulloblastoma, craneospinal irradiation, VMAT, dosimetry, radiotherapyAbstract
Objective: To present the feasibility of the treatment of medulloblastoma with volumetric-modulated arc therapy (VMAT) planned with RayStation for Elekta linacs and compare the results with conventional treatment.
Materials and methods: 3 adult patients in prone position treated with 3D-conformal radiotherapy (3DCRT) with 6 MV and 18 MV were replanned with 6 MV VMAT. The dose prescription was 1.8 Gy/fraction. The evaluation of the techniques was carried out with dose-volume histograms and isodoses in target volumes and healthy tissues, and with conformity (CI) and homogeneity (HI) indexes.
Results: VMAT CI (0.79 ± 0.02) and HI (0.08 ± 0.02) of the tended to be better than those of 3DCRT (CI = 0.58 ± 0.03 and HI = 0.14 ± 0.07). For healthy tissues, a decrease in the maximum absorbed dose was observed (VMAT: D1% = 1.76 ± 0.04 Gy/fraction and 3DCRT: D1% = 1.93 ± 0.04 Gy/fraction) as well as in the overdoses (VMAT: V107% = 0.05 ± 0.08% and 3DCRT: V107% = 1.0 ± 0.5%). The dosimetric results of organs at risk showed no trend when both techniques were compared.
Conclusion: The performance with RayStation of the medulloblastoma treatment by VMAT is viable for Elekta linacs, and a greater coverage, homogeneity and conformation in the target is achieved. Overdoses were also markedly reduced compared with those caused by 3DCRT treatments.
References
2. Parker W, Filion E, Roberge D, Freeman CR. Intensity-modulated radiotherapy for craniospinal irradiation: target volume considerations, dose constraints, and competing risks. Int J Radiat Oncol Biol Phys. 2007 Sep;69(1):251–7.
3. Brandes AA, Franceschi E, Tosoni A, Blatt V, Ermani M. Long-term results of a prospective study on the treatment of medulloblastoma in adults. Cancer. 2007 Nov;110(9):2035–41.
4. Igual Estellés L, Berlanga Charriel P, Cañete Nieto A. Meduloblastoma: mejoría de la supervivencia en las últimas décadas. Experiencia de un centro. An Pediatría [Internet]. 2017;86(1):4–10. Available from: http://www.sciencedirect.com/science/article/pii/S1695403316300091
5. Ramos Aguerri A, Hervás A, Morera R, Montero A, Córdoba S, Corona J, et al. Avances en radio-quimioterapia en tumores cerebrales. Vol. 27, Oncología (Barcelona). scieloes; 2004. p. 71–5.
6. Myers PA, Mavroidis P, Papanikolaou N, Stathakis S. Comparing conformal, arc radiotherapy and helical tomotherapy in craniospinal irradiation planning. J Appl Clin Med Phys. 2014 Sep;15(5):4724.
7. Martínez León MI. Meduloblastoma pediátrico, revisión y puesta al día. Radiologia [Internet]. 2010;53(2):134–45. Available from: http://www.elsevier.es/es-revista-radiologia-119-articulo-meduloblastoma-pediatrico-revision-puesta-al-S0033833810003905
8. Michalski JM, Klein EE, Gerber R. Method to plan, administer, and verify supine craniospinal irradiation. J Appl Clin Med Phys. 2002;3(4):310–6.
9. Selek U, Zorlu F, Hurmuz P, Cengiz M, Turker A, Soylemezoglu F, et al. Craniospinal radiotherapy in adult medulloblastoma. Strahlentherapie und Onkol Organ der Dtsch Rontgengesellschaft . [et al]. 2007 May;183(5):236–40.
10. Huguet F, Haberer-Guillerm S, Monnier L. Radioterapia. EMC - Tratado Med [Internet]. 2014;18(3):1–6. Available from: http://www.sciencedirect.com/science/article/pii/S1636541014681435
11. Delgado JM, Garcia A, Garcia F, Millan E. Fundamentos de Física Médica. Radioterapia externa II: Dosimetría clínica, algoritmos de cálculo, sistemas de planificación y control de calidad. España: SEFM. [Internet]. ADI Servic. Brosed Serreta A, Millán Cebrián E, editors. 2013. Available from: www.sefm.es/userfiles/libros_baeza/fundamentos_fm_v4_web.pdf
12. Fogliata A, Bergstrom S, Cafaro I, Clivio A, Cozzi L, Dipasquale G, et al. Cranio-spinal irradiation with volumetric modulated arc therapy: a multi-institutional treatment experience. Radiother Oncol. 2011 Apr;99(1):79–85.
13. Lee YK, Brooks CJ, Bedford JL, Warrington AP, Saran FH. Development and evaluation of multiple isocentric volumetric modulated arc therapy technique for craniospinal axis radiotherapy planning. Int J Radiat Oncol Biol Phys. 2012 Feb;82(2):1006–12.
14. Zong-Wen S, Shuang-Yan Y, Feng-Lei D, Xiao-Long C, Qinglin L, Meng-Yuan C, et al. Radiotherapy for Adult Medulloblastoma: Evaluation of Helical Tomotherapy, Volumetric Intensity Modulated Arc Therapy, and Three-Dimensional Conformal Radiotherapy and the Results of Helical Tomotherapy Therapy. Biomed Res Int. 2018;2018:9153496.
15. De Saint-Hubert M, Verellen D, Poels K, Crijns W, Magliona F, Depuydt T, et al. Out-of-field doses from pediatric craniospinal irradiations using 3D-CRT, IMRT, helical tomotherapy and electron-based therapy. Phys Med Biol. 2017 Jul;62(13):5293–311.
16. Bedford JL, Lee YK, Saran FH, Warrington AP. Helical volumetric modulated arc therapy for treatment of craniospinal axis. Int J Radiat Oncol Biol Phys. 2012 Jul;83(3):1047–54.
17. Hadley A, Ding GX. A single-gradient junction technique to replace multiple-junction shifts for craniospinal irradiation treatment. Med Dosim. 2014;39(4):314–9.
18. Panandiker AP, Ning H, Likhacheva A, Ullman K, Arora B, Ondos J, et al. Craniospinal Irradiation With Spinal IMRT to Improve Target Homogeneity. Int J Radiat Oncol Biol Phys. 2007;68(5):1402–9.
19. Novario R, Stucchi P, Perna L, Conte L. Radiotherapy treatment verification. Tumori. 1998;84(2):144–9.
20. Fredh A, Scherman JB, Fog LS, Munck af Rosenschold P. Patient QA systems for rotational radiation therapy: a comparative experimental study with intentional errors. Med Phys. 2013 Mar;40(3):31716.
21. Ahnesjo A. Collapsed cone convolution of radiant energy for photon dose calculation in heterogeneous media. Med Phys. 1989;16(4):577–92.
22. Khan FM, Gibbons J, Mihailidis D, Alkhatib H. Khan’s Lectures: Handbook of the Physics of Radiation Therapy [Internet]. Wolters Kl. 2012. Capítulo 13 Páginas: 253-261 Available from: http://books.google.com/books?id=DVkG5-wTrJkC&pgis=1
23. Lee T-F, Ting H-M, Chao P-J, Fang F-M. Dual arc volumetric-modulated arc radiotherapy (VMAT) of nasopharyngeal carcinomas: a simultaneous integrated boost treatment plan comparison with intensity-modulated radiotherapies and single arc VMAT. Clin Oncol (R Coll Radiol). 2012 Apr;24(3):196–207.
24. Zhao L-R, Zhou Y-B, Sun J-G. Comparison of plan optimization for single and dual volumetric-modulated arc therapy versus intensity-modulated radiation therapy during post-mastectomy regional irradiation. Oncol Lett. 2016 May;11(5):3389–94.
25. Cao F, Ramaseshan R, Corns R, Harrop S, Nuraney N, Steiner P, et al. A three-isocenter jagged-junction IMRT approach for craniospinal irradiation without beam edge matching for field junctions. Int J Radiat Oncol Biol Phys. 2012 Nov;84(3):648–54.
26. Munshi A, Jalali R. A simple technique of supine craniospinal irradiation. Med Dosim. 2008;33(1):1–5.
27. Kiltie AE, Povall JM, Taylor RE. The need for the moving junction in craniospinal irradiation. Br J Radiol. 2000 Jun;73(870):650–4.
28. Parker W, Brodeur M, Roberge D, Freeman C. Standard and nonstandard craniospinal radiotherapy using helical TomoTherapy. Int J Radiat Oncol Biol Phys. 2010 Jul;77(3):926–31.