Guide for quality control and safety of external radiotherapy planning systems and treatment plans
DOI:
https://doi.org/10.37004/sefm/2024.25.1.008Keywords:
Treatment planning system, plan verification, quality assurance, initial reference state, audits, end-to-end testsAbstract
The content of the document reflects the recommendations of the SEFM for the quality control and safe use of external radiotherapy treatment planning systems. An initial exposition is presented regarding the reasons, general considerations, and main updates to be taken into account in current planning systems before proceeding to analyze in detail the characterization of treatment units and the parameters to consider in their modeling, with special emphasis on those related to the multileaf collimator.
The document is divided into three distinct sections aimed at comprehensively covering all aspects influencing the quality and safety of the treatment planning system product, the treatment plan. These sections emcompass quality control of the planning system, quality assurance of the planning process, and treatment plan verification, all while maintaining the perspective provided by the associated risk analysis.
The quality control program is established in three steps: initial reference state, periodic checks, and checks after updates. In addition to this, the planning process is analyzed, ensuring its quality through global processes such as audits and end-to-end tests, plan evaluation, and systematization related to standardization and class solutions. Finally, the document describes plan verification tools and their limitations, associated metrics, and potential verification strategies. The entire document concludes with a final chapter summarizing all recommendations based on the exposition and specifying tolerances to be used at each stage.
References
del ESTADO BO. REAL DECRETO, 1566/1998, 17 de julio, por el que se establecen los criterios de calidad en radioterapia. Boletín Of del Estado. 1998:29383-29395. papers2://publication/uuid/099423F4-7378-45A5-AE99-CD26B6AABEA3.
Ministerio de Sanidad. Real Decreto 601/2019, de 18 de octubre, sobre justificación y optimización del uso de las radiaciones ionizantes para la protección radiológica de las personas con ocasión de exposiciones médicas. Boletín Of del estado. 2019;262:120840-120856.
Millan-Cebrian E, Garcia-Vicente F, Delgado-Rodríguez JM. Protocolo de Control de Calidad de Sistemas de Planificación En Radioterapia y Braquiterapia. (SEFM, ed.). SEFM; 2005.
Delgado-Rodríguez JM, García-Romero A, Millán Cebrián E, García Vicente F. Fundamentos de Física Médica: Volumen 4. Dosimetría Clínica, Algoritmos de Cálculo y Sistemas de Planificación y Control de Calidad. 1st ed. (SEFM, ed.). ADI Servicios Editoriales; 2013.
Ahnesjö A, Aspradakis MM. Dose calculations for external photon beams in radiotherapy. Phys Med Biol. 1999;44:R99-R115.
Andreo P. Monte Carlo techniques in medical radiation physics. Phys Med Biol. 1991;36(7):861-920. https://doi.org/10.1088/0031-9155/36/7/001
Curran B, Cygler JE, Demarco JJ, et al. Report of the AAPM Task Group No . 105 : Issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning. Organization. 2007;(105):4818-4853. https://doi.org/10.1118/1.2795842
Vassiliev ON, Wareing T a, McGhee J, Failla G, Salehpour MR, Mourtada F. Validation of a new grid-based Boltzmann equation solver for dose calculation in radiotherapy with photon beams. Phys Med Biol. 2010;55(3):581-598. https://doi.org/10.1088/0031-9155/55/3/002
Knöös T, Wieslander E, Cozzi L, et al. Comparison of dose calculation algorithms for treatment planning in external photon beam therapy for clinical situations. Phys Med Biol. 2006;51(22):5785-5807. https://doi.org/10.1088/0031-9155/51/22/005
Ojala J, Kapanen M, Sipilä P, Hyödynmaa S. The accuracy of Acuros XB algorithm for radiation beams traversing a metallic hip implant — comparison with measurements and Monte Carlo calculations. 2014;15(5):162-176.
Berger M. Methods in Computational Physics. (Alder B, Fernbach S, Rotenberg M, eds.). Academic Press; 1963.
Huang JY, Dunkerley D, Smilowitz JB. Evaluation of a commercial Monte Carlo dose calculation algorithm for electron treatment planning. J Appl Clin Med Phys. 2019;20(6):184-193. https://doi.org/10.1002/acm2.12622
Ma CMC, Chetty IJ, Deng J, et al. Beam modeling and beam model commissioning for Monte Carlo dose calculation-based radiation therapy treatment planning: Report of AAPM Task Group 157. Med Phys. 2020;47(1):e1-e18. https://doi.org/10.1002/mp.13898
Adam DP, Liu T, Caracappa PF, Bednarz BP, Xu XG. New capabilities of the Monte Carlo dose engine ARCHER-RT: Clinical validation of the Varian TrueBeam machine for VMAT external beam radiotherapy. Med Phys. 2020;47(6):2537-2549. https://doi.org/10.1002/mp.14143
Fippel M. Fast Monte Carlo dose calculation for photon beams based on the VMC electron algorithm. Med Phys. 1999;26(8):1466-1475. http://www.ncbi.nlm.nih.gov/pubmed/10501045.
Raaijmakers AJE, Raaymakers BW, Lagendijk JJW. Integrating a MRI scanner with a 6 MV radiotherapy accelerator: dose increase at tissue-air interfaces in a lateral magnetic field due to returning electrons. Phys Med Biol. 2005;50(7):1363-1376. https://doi.org/10.1088/0031-9155/50/7/002
Han T, Mikell JK, Salehpour M, Mourtada F. Dosimetric comparison of Acuros XB deterministic radiation transport method with Monte Carlo and model-based convolution methods in heterogeneous media. Med Phys. 2011;38(5):2651-2664. https://doi.org/10.1118/1.3582690
Siebers J V, Keall PJ, Nahum AE, Mohan R. Converting absorbed dose to medium to absorbed dose to water for Monte Carlo based photon beam dose calculations. Phys Med Biol. 2000;45(4):983-995. http://www.ncbi.nlm.nih.gov/pubmed/10795986.
Ma C, Li J. Dose specification for radiation therapy : dose to water or dose to medium ? 2011;56:3073-3089. https://doi.org/10.1088/0031-9155/56/10/012
ICRU. Prescribing, Recording, and Reporting of Stereotactic Treatments with Small Photon Beams. J ICRU. 2014;14(2):1-5. https://doi.org/10.1093/jicru/ndx013
Andreo P. Dose to “water-like” media or dose to tissue in MV photons radiotherapy treatment planning: still a matter of debate. Phys Med Biol. 2015;60(1):309-337. https://doi.org/10.1088/0031-9155/60/1/309
Gladstone DJ, Kry SF, Xiao Y, Chetty IJ. Dose Specification for NRG Radiation Therapy Trials. Int J Radiat Oncol. 2016;95(5):1344-1345. https://doi.org/10.1016/j.ijrobp.2016.03.044
Kry SF, Feygelman V, Balter P, et al. AAPM Task Group 329 Reference dose specification for dose calculations: Dose-to-water or dose-to-muscle? Med Phys. 2019;47(3):e52-e64.
Al-Hallaq HA, Chmura SJ, Salama JK, et al. Benchmark Credentialing Results for NRG-BR001: The First National Cancer Institute-Sponsored Trial of Stereotactic Body Radiation Therapy for Multiple Metastases. Int J Radiat Oncol. 2017;97(1):155-163. https://doi.org/10.1016/j.ijrobp.2016.09.030
Fernández-Varea JM, Carrasco P, Panettieri V, Brualla L. Monte Carlo based water/medium stopping-power ratios for various ICRP and ICRU tissues. Phys Med Biol. 2007;52(21):6475-6483. https://doi.org/10.1088/0031-9155/52/21/009
Younes T, Chauvin M, Delbaere A, et al. Towards the standardization of the absorbed dose report mode in high energy photon beams. Phys Med Biol. 2021;66(4):45009. https://doi.org/10.1088/1361-6560/abd22c
Kry SF, Lye J, Clark CH, et al. Report dose-to-medium in clinical trials where available; a consensus from the Global Harmonisation Group to maximize consistency. Radiother Oncol. 2021;159:106-111. https://doi.org/10.1016/j.radonc.2021.03.006
Muñoz-Montplet C, Marruecos J, Buxó M, et al. Dosimetric impact of Acuros XB dose-to-water and dose-to-medium reporting modes on VMAT planning for head and neck cancer. Phys Medica. 2018;55:107-115. https://doi.org/10.1016/j.ejmp.2018.10.024
Jurado-Bruggeman D, Muñoz-Montplet C, Hernandez V, Saez J, Fuentes-Raspall R. Impact of the dose quantity used in MV photon optimization on dose distribution, robustness, and complexity. Med Phys. 2022;49(1):648-665. https://doi.org/10.1002/mp.15389
Draeger E, Sawant A, Johnstone C, et al. A Dose of Reality: How 20 Years of Incomplete Physics and Dosimetry Reporting in Radiobiology Studies May Have Contributed to the Reproducibility Crisis. Int J Radiat Oncol. 2020;106(2):243-252. https://doi.org/10.1016/j.ijrobp.2019.06.2545
García Riñón D, Ferrer Gracia C, Huertas Martínez C, Sánchez López R, Sáez Beltrán M. Comparación de dosis absorbida en agua y dosis absorbida en medio en tratamientos de próstata y cabeza y cuello. Análisis con diferentes tamaños de rejilla y curvas de calibración CT. Rev Física Médica. 2022;23(1):11-26. https://doi.org/10.37004/sefm/2022.23.1.001
Romero AG, Masgrau VH, García AT, Gutiérrez FC, Cano DM. Resultados de la encuesta de la Sociedad Española de Física Médica sobre el control de calidad de los sistemas de planificación de tratamientos en el ámbito de haces de fotones y electrones de radioterapia externa Results of the SEFM’s national survey o. Rev Física Médica. 2021;22(2):55-66.
Jia X, Ziegenhein P, Jiang SB. GPU-based high-performance computing for radiation therapy. Phys Med Biol. 2014;59(4):R151-82. https://doi.org/10.1088/0031-9155/59/4/R151
Edmund JM, Nyholm T. A review of substitute CT generation for MRI-only radiation therapy. Radiat Oncol. 2017;12(1):1-15. https://doi.org/10.1186/s13014-016-0747-y
Craft D, Mcquaid D, Wala J, Chen W, Salari E, Bortfeld T. Multicriteria VMAT optimization. Med Phys. 2014;686(2012). https://doi.org/10.1118/1.3675601
Unkelbach J, Bortfeld T, Craft D, et al. Optimization approaches to volumetric modulated arc therapy planning Optimization approaches to volumetric modulated arc therapy planning. Med Phys. 2015;1367. https://doi.org/10.1118/1.4908224
AAPM Task Group 166 TPC. The Use and QA of Biologically Related Models for Treatment Planning Report of AAPM Task Group 166.; 2012.
Fogliata A, Thompson S, Stravato A, Tomatis S, Scorsetti M, Cozzi L. On the gEUD biological optimization objective for organs at risk in Photon Optimizer of Eclipse treatment planning system. J Appl Clin Med Phys. 2018;(October 2017):106-114. https://doi.org/10.1002/acm2.12224
Vanetti E, Nicolini G, Nord J, et al. On the role of the optimization algorithm of RapidArc® volumetric modulated arc therapy on plan quality and efficiency On the role of the optimization algorithm of RapidArc V volumetric modulated arc therapy on plan quality and efficiency. Med Phys. 2014;5844(2011). https://doi.org/10.1118/1.3641866
Palmans H, Andreo P, Huq S, Seuntjens J. Dosimetry of small static fields used in external beam radiotherapy: An IAEA-AAPM International Code of Practice for reference and relative dose determination. Technical Report Series No. 483. Iaea Trs483. 2017;(November). http://www-pub.iaea.org/MTCD/Publications/PDF/D483_web.pdf.
Sharp G, Fritscher KD, Pekar V, et al. Vision 20/20: Perspectives on automated image segmentation for radiotherapy. Med Phys. 2014;41(5):1-13. https://doi.org/10.1118/1.4871620
Fu Y, Zhang H, Morris ED, et al. Artificial Intelligence in Radiation Therapy. IEEE Trans Radiat Plasma Med Sci. 2022;6(2):158-181.
Wang C, Zhu X, Hong JC, Zheng D. Artificial Intelligence in Radiotherapy Treatment Planning: Present and Future. Technol Cancer Res Treat. 2019;18:1-11. https://doi.org/10.1177/1533033819873922
Liu X, Li K, Yang R, Geng L. Review of Deep Learning Based Automatic Segmentation for Lung Cancer Radiotherapy Basis of Deep Learning. Front Oncol. 2021;11(July):1-16. https://doi.org/10.3389/fonc.2021.717039
Hussein M, Heijmen BJM, Verellen D, Nisbet A. Automation in intensity modulated radiotherapy treatment planning — a review of recent innovations. Br J Radiol. 2018;91(July).
Hussein M, Heijmen BJM, Verellen D, Nisbet A. Automation in intensity modulated radiotherapy treatment planning-a review of recent innovations. Br J Radiol. 2018;91(1092). https://doi.org/10.1259/bjr.20180270
Craft D, Wala J, Chen W, Salari E, Bortfeld T. Multicriteria VMAT optimization. Med Phys. 2012;39(2):686-696. https://doi.org/10.1118/1.3675601
Liu H, Sintay B, Pearman K, et al. Comparison of the progressive resolution optimizer and photon optimizer in VMAT optimization for stereotactic treatments. J Appl Clin Med Phys 2018;(April):155-162. https://doi.org/10.1002/acm2.12355
Yan H, Dai J, Li Y. A fast optimization approach for treatment planning of volumetric modulated arc therapy. Radiat Oncol. 2018:1-13.
Wheeler PA, Chu M, Holmes R, et al. Utilisation of Pareto navigation techniques to calibrate a fully automated radiotherapy treatment planning solution. Phys Imaging Radiat Oncol. 2019;10(April):41-48. https://doi.org/10.1016/j.phro.2019.04.005
Hrinivich WT, Lee J. Artificial intelligence-based radiotherapy machine parameter optimization using reinforcement learning. Med Phys. 2020;47(12):6140-6150. https://doi.org/10.1002/mp.14544
Moore KL. Automated Radiotherapy Treatment Planning. Semin Radiat Oncol. 2019;29(3):209-218. https://doi.org/10.1016/j.semradonc.2019.02.003
Brock KK, Mutic S, McNutt TR, Li H, Kessler ML. Use of image registration and fusion algorithms and techniques in radiotherapy: Report of the AAPM Radiation Therapy Committee Task Group No. 132: Report. Med Phys. 2017;44(7):e43-e76. https://doi.org/10.1002/mp.12256
García-Mollá R, Sánchez Rubio P, Bonaque Alandí J, Carrasco Herrera MA, Lliso Valverde F. Implementación y uso clínico de la radioterapia adaptativa. Informe del grupo de trabajo de radioterapia adaptativa de la Sociedad Española de Física Médica (SEFM). Rev Física Médica. 2021;22(1):123-166. https://doi.org/10.37004/sefm/2021.22.1.004
Dutreix A. When and how can we improve precision in radiotherapy? Radiother Oncol J Eur Soc Ther Radiol Oncol. 1984;2(4):275-292. https://doi.org/10.1016/s0167-8140(84)80070-5
Mijnheer BJ, Battermann JJ, Wambersie A. What degree of accuracy is required and can be achieved in photon and neutron therapy? Radiother Oncol J Eur Soc Ther Radiol Oncol. 1987;8(3):237-252. https://doi.org/10.1016/s0167-8140(87)80247-5
Dyk J Van, Barnett RB, Cygler JE, Shragge PC. Commissioning and quality assurance of treatment planning computers. Int J Radiat Oncol Biol Phys. 1993;26(2):261-273. https://doi.org/10.1016/0360-3016(93)90206-B
Ahnesjö a, Aspradakis MM. Dose calculations for external photon beams in radiotherapy. Phys Med Biol. 1999;44(11):R99-155. http://www.ncbi.nlm.nih.gov/pubmed/10588277.
Zhu TC, Stathakis S, Clark JR, et al. Report of AAPM Task Group 219 on independent calculation-based dose/MU verification for IMRT. Med Phys. 2021;48(10):e808-e829. https://doi.org/10.1002/mp.15069
Andreo P, Izewska J, Shortt K, Vatnitsky S. IAEA Technical Reports Series No. 430: Commissioning And Quality Assurance Of Computerized Planning Systems For Radiation Treatment Of Cancer. IAEA TECDOC 430. 2004:281.
Mijnheer B, Olszewska A, Fiorino C. Estro Booklet No7. Quality Assurance of Treatment Planning Systems.; 2008.
D. Schuring, Westendorp H, Bijl E van der, et al. Quality Assurance of Treatment Planning Systems Practical guideline for verification of installations and updates of treatment. NCS reports. 2022;(July). https://doi.org/10.25030/ncs-035
Geurts MW, Jacqmin DJ, Mihailidis DN, et al. AAPM Medical Physics Practice Guideline 5. b: Commissioning and QA of treatment planning dose calculations — Megavoltage photon and electron beams. J Appl Clin Med Phys. 2022. https://doi.org/10.1002/acm2.13641
International Atomic Energy Agency IAEA. IAEA-TECDOC-1583. Commissioning of Radiotherapy Treatment Planning Systems : Testing for Typical External Beam Treatment Techniques. 2008.
Ghazal M, Södergren L, Westermark M, Söderström J, Pommer | Tobias. Dosimetric and mechanical equivalency of Varian TrueBeam linear accelerators beam-matching, DLG and jaw calibration, energy-matching. J Appl Clin Med Phys. 2020;21:43-53. https://doi.org/10.1002/acm2.13058
Das IJ, Cheng CW, Watts RJ, et al. Accelerator beam data commissioning equipment and procedures: Report of the TG-106 of the Therapy Physics Committee of the AAPM. Med Phys. 2008;35(9):4186-4215. https://doi.org/10.1118/1.2969070
Chen S, Yi BY, Yang X, Xu H, Prado KL, D’Souza WD. Optimizing the MLC model parameters for IMRT in the RayStation treatment planning system. J Appl Clin Med Phys. 2015;16(5):322-332. https://doi.org/10.1120/jacmp.v16i5.5548
Georg D, Heukelom S, Venselaar J. Formalisms for MU calculations, ESTRO booklet 3 versus NCS report 12. Radiother Oncol. 2001;60(3):319-328. https://doi.org/10.1016/S0167-8140(01)00348-6
Gershkevitsh E, Schmidt R, Velez G, et al. Dosimetric verification of radiotherapy treatment planning systems: Results of IAEA pilot study. Radiother Oncol. 2008;89(3):338-346. https://doi.org/10.1016/j.radonc.2008.07.007
Bruinvis IAD, Keus RB, Lenglet WJM, et al. Quality assurance of 3-D treatment planning systems for external photon and electron beams. Ned Comm voor Stralingsdosimetrie. 2005;15(March):1-31.
Liu C, Li Z, Palta JR. Characterizing output for the Varian enhanced dynamic wedge field. Med Phys. 1998;25(1):64-70. https://doi.org/10.1118/1.598161
Das IJ, Francescon P, Moran JM, et al. Report of AAPM Task Group 155: Megavoltage photon beam dosimetry in small fields and non-equilibrium conditions. Med Phys. 2021;48(10):e886-e921. https://doi.org/10.1002/mp.15030
Chang Z, Wu Q, Adamson J, et al. Commissioning and dosimetric characteristics of TrueBeam system: composite data of three TrueBeam machines. Med Phys. 2012;39(11):6981-7018. https://doi.org/10.1118/1.4762682
Ezzell G a., Burmeister JW, Dogan N, et al. IMRT commissioning: Multiple institution planning and dosimetry comparisons, a report from AAPM Task Group 119. Med Phys. 2009;36(11):5359. https://doi.org/10.1118/1.3238104
Carrasco P, Jornet N, Duch M a., et al. Comparison of dose calculation algorithms in phantoms with lung equivalent heterogeneities under conditions of lateral electronic disequilibrium. Med Phys. 2004;31(10):2899. https://doi.org/10.1118/1.1788932
Fogliata A, Lobefalo F, Reggiori G, et al. Evaluation of the dose calculation accuracy for small fields defined by jaw or MLC for AAA and Acuros XB algorithms. Med Phys. 2016;43(10):5685-5694. https://doi.org/10.1118/1.4963219
Williams MJ, Metcalfe P. Verification of a rounded leaf-end MLC model used in a radiotherapy treatment planning system. Phys Med Biol. 2006;51(4):N65-78. https://doi.org/10.1088/0031-9155/51/4/N03
Mzenda B, Mugabe K V., Sims R, Godwin G, Loria D. Modeling and dosimetric performance evaluation of the RayStation treatment planning system. J Appl Clin Med Phys. 2014;15(5):29-46. https://doi.org/10.1120/jacmp.v15i5.4787
Young LA, Yang F, Cao N, Meyer J. Rounded leaf end modeling in Pinnacle VMAT treatment planning for fixed jaw linacs. J Appl Clin Med Phys. 2016;17(6):149-162. https://doi.org/10.1120/jacmp.v17i6.6343
Kinsella P, Shields L, McCavana P, McClean B, Langan B. Determination of MLC model parameters for Monaco using commercial diode arrays. J Appl Clin Med Phys. 2016;17(4):37-47. https://doi.org/10.1120/jacmp.v17i4.6190
Snyder M, Halford R, Knill C, et al. Modeling the Agility MLC in the Monaco treatment planning system. J Appl Clin Med Phys. 2016;17(3):190-202. https://doi.org/10.1120/jacmp.v17i3.6044
Smilowitz JB, Das IJ, Feygelman V, et al. AAPM Medical Physics Practice Guideline 5.a.: Commissioning and QA of Treatment Planning Dose Calculations - Megavoltage Photon and Electron Beams. J Appl Clin Med Phys. 2016;17(1):6166.
Mans A, Schuring D, Arends MP, et al. The NCS code of practice for the quality assurance and control for volumetric modulated arc therapy. Phys Med Biol. 2016;61(19):7221-7235. https://doi.org/10.1088/0031-9155/61/19/7221
McKenzie EM, Balter P a, Stingo FC, Jones J, Followill DS, Kry SF. Toward optimizing patient-specific IMRT QA techniques in the accurate detection of dosimetrically acceptable and unacceptable patient plans. Med Phys. 2014;41(12):121702. https://doi.org/10.1118/1.4899177
Glenn MC, Peterson CB, Howell RM, Followill DS, Pollard-Larkin JM, Kry SF. Sensitivity of IROC phantom performance to radiotherapy treatment planning system beam modeling parameters based on community-driven data. Med Phys. 2020. https://doi.org/10.1002/mp.14396
Nelms BE, Chan MF, Jarry G, et al. Evaluating IMRT and VMAT dose accuracy: practical examples of failure to detect systematic errors when applying a commonly used metric and action levels. Med Phys. 2013;40(11):111722. https://doi.org/10.1118/1.4826166
Kry SF, Molineu A, Kerns J, et al. Institutional patient-specific intensity-modulated radiation therapy quality assurance does not predict unacceptable plan delivery as measured by IROC Houston’s head and neck phantom. Int J Radiat Oncol Biol Phys. 2014;90(5):1195-1201. https://doi.org/10.1016/j.ijrobp.2014.08.334.Institutional
Koger B, Price R, Wang D, Toomeh D, Geneser S, Ford E. Impact of the MLC leaf-tip model in a commercial TPS: Dose calculation limitations and IROC-H phantom failures. J Appl Clin Med Phys. 2020;21(2):82-88. https://doi.org/10.1002/acm2.12819
Vieillevigne L, Khamphan C, Saez J, Hernandez V. On the need for tuning the dosimetric leaf gap for stereotactic treatment plans in the Eclipse treatment planning system. J Appl Clin Med Phys. 2019;(May):68-77. https://doi.org/10.1002/acm2.12656
Hernandez V, Saez J, Angerud A, et al. Dosimetric leaf gap and leaf trailing effect in a double-stacked multileaf collimator. Med Phys. 2021;48(7):3413-3424. https://doi.org/10.1002/mp.14914
Hernandez V, Angerud A, Bogaert E, et al. Challenges in modeling the Agility multileaf collimator in treatment planning systems and current needs for improvement. Med Phys. 2022;49(12):7404-7416. https://doi.org/10.1002/mp.16016
Saez J, Hernandez V, Goossens J, De Kerf G, Verellen D. A novel procedure for determining the optimal: MLC. configuration parameters in treatment planning systems based on measurements with a Farmer chamber. Phys Med Biol. 2020;65(15). https://doi.org/10.1088/1361-6560/ab8cd5
Kielar KN, Mok E, Hsu A, Wang L, Luxton G. Verification of dosimetric accuracy on the TrueBeam STx: Rounded leaf effect of the high definition MLC. Med Phys. 2012;39(10):6360-6371. https://doi.org/10.1118/1.4752444
Kim J, Han JS, Hsia AT, Li S, Xu Z, Ryu S. Relationship between dosimetric leaf gap and dose calculation errors for high definition multi-leaf collimators in radiotherapy. Phys Imaging Radiat Oncol. 2018;5(September 2017):31-36. https://doi.org/10.1016/j.phro.2018.01.003
Yao W, Farr JB. Determining the optimal dosimetric leaf gap setting for rounded leaf-end multileaf collimator systems by simple test fields. J Appl Clin Med Phys. 2015;16(4):65-77. https://doi.org/10.1120/jacmp.v16i4.5321
Hernandez V, Vera-Sánchez JA, Vieillevigne L, Saez J. Commissioning of the tongue-and-groove modelling in treatment planning systems: From static fields to VMAT treatments. Phys Med Biol. 2017;62(16):6688-6707. https://doi.org/10.1088/1361-6560/aa7b1a
Antoine M, Ralite F, Soustiel C, et al. Use of metrics to quantify IMRT and VMAT treatment plan complexity: A systematic review and perspectives. Phys Medica. 2019;64. https://doi.org/10.1016/j.ejmp.2019.05.024
Chiavassa S, Bessieres I, Edouard M, Mathot M, Moignier A. Complexity metrics for IMRT and VMAT plans: A review of current literature and applications. Br J Radiol. 2019;92(1102). https://doi.org/10.1259/bjr.20190270
Miften M, Olch A, Mihailidis D, et al. Tolerance limits and methodologies for IMRT measurement-based verification QA: Recommendations of AAPM Task Group No. 218. Med Phys. 2018;45(4):e53-e83. https://doi.org/10.1002/mp.12810
Saez J, Bar-Deroma R, Bogaert E, et al. Universal evaluation of MLC models in treatment planning systems based on a common set of dynamic tests. Radiother Oncol. 2023;186:109775. https://doi.org/10.1016/j.radonc.2023.109775
Saini A, Tichacek C, Johansson W, et al. Unlocking a closed system: dosimetric commissioning of a ring gantry linear accelerator in a multivendor environment. J Appl Clin Med Phys. 2021;22(2):21-34. https://doi.org/10.1002/acm2.13116
Passal V, Barreau M, Tiplica T, Dufreneix S. Optimizing the effective spot size and the dosimetric leaf gap of the AcurosXB algorithm for VMAT treatment planning. J Appl Clin Med Phys. 2021;22(6):154-161. https://doi.org/10.1002/acm2.13256
Hill DL, Batchelor PG, Holden M, Hawkes DJ. Medical image registration. Phys Med Biol. 2001;46(3):R1-45. http://www.ncbi.nlm.nih.gov/pubmed/11277237.
Hussein M, Akintonde A, McClelland J, Speight R, Clark CH. Clinical use, challenges, and barriers to implementation of deformable image registration in radiotherapy – the need for guidance and QA tools. Br J Radiol. 2021;94(1122). https://doi.org/10.1259/bjr.20210001
Olch AJ, Gerig L, Li H, Mihaylov I, Morgan A. Dosimetric effects caused by couch tops and immobilization devices: Report of AAPM Task Group 176. Med Phys. 2014;41(6). https://doi.org/10.1118/1.4876299
Chen W, Wang C, Zhan W, et al. A comparative study of auto-contouring softwares in delineation of organs at risk in lung cancer and rectal cancer. Sci Rep. 2021;11(1):1-8. https://doi.org/10.1038/s41598-021-02330-y
Zabel WJ, Conway JL, Gladwish A, et al. Clinical Evaluation of Deep Learning and Atlas-Based Auto-Contouring of Bladder and Rectum for Prostate Radiation Therapy. Pract Radiat Oncol. 2021;11(1):e80-e89. https://doi.org/10.1016/J.PRRO.2020.05.013
Wong J, Huang V, Wells D, et al. Implementation of deep learning-based auto-segmentation for radiotherapy planning structures: a workflow study at two cancer centers. Radiat Oncol. 2021;16(1):1-10. https://doi.org/10.1186/s13014-021-01831-4
Boyd R a., Hogstrom KR, Antolak J a., Shiu AS. A measured data set for evaluating electron-beam dose algorithms. Med Phys. 2001;28(6):950. https://doi.org/10.1118/1.1374245
Ding GX, Cygler JE, Zhang GG, Yu MK. Evaluation of a commercial three-dimensional electron beam treatment planning system. Med Phys. 1999;26(12):2571-2580. https://doi.org/10.1118/1.598795
Venselaar J, Welleweerd H, Mijnheer B. Tolerances for the accuracy of photon beam dose calculations of treatment planning systems. Radiother Oncol. 2001;60(2):191-201. https://doi.org/10.1016/S0167-8140(01)00377-2
Koger B, Price R, Wang D, Toomeh D, Geneser S, Ford E. Impact of the MLC leaf-tip model in a commercial TPS: Dose calculation limitations and IROC-H phantom failures. J Appl Clin Med Phys. 2020. https://doi.org/10.1002/acm2.12819
van Elmpt WJC, Nijsten SMJJG, Dekker AL a. J, Mijnheer BJ, Lambin P. Treatment verification in the presence of inhomogeneities using EPID-based three-dimensional dose reconstruction. Med Phys. 2007;34(7):2816. https://doi.org/10.1118/1.2742778
Vieillevigne L, Khamphan C, Saez J, Hernandez V. On the need for tuning the dosimetric leaf gap for stereotactic treatment plans in the Eclipse treatment planning system. J Appl Clin Med Phys. 2019;20(7):68-77. https://doi.org/10.1002/acm2.12656
Mechalakos JG, Dieterich S, Fong de los Santos LE, et al. Electronic charting of radiation therapy planning and treatment: Report of Task Group 262. Med Phys. 2021;48(11):e927-e968. https://doi.org/10.1002/mp.15116
Medical Imaging and Technology Alliance. Supplement 11: Radiotherapy Objects DICOM-RT. DICOM-RT Suppl. 1997;(June).
Medical Imaging and Technology Alliance. Supplement 29: Radiotherapy Treatment Records and Radiotherapy Media Extensions. DICOM-RT Suppl. 1999;(May):1-7.
IAEA. Record and Verify Systems for Radiation Treatment of Cancer: Acceptance Testing, Commissioning and Quality Control. Heal Rep Ser. 2013;7:39. http://www-pub.iaea.org/MTCD/Publications/PDF/Pub1607_web.pdf.
AAPM Task Group 263. Standardizing Nomenclatures in Radiation Oncology: The Report of AAPM Task Group 263.; 2018. https://www.aapm.org/pubs/reports/RPT_263.pdf.
Huq MS, Fraass BA, Dunscombe PB, et al. The report of Task Group 100 of the AAPM: Application of risk analysis methods to radiation therapy quality management. Med Phys. 2016;43(33):4078-3874. https://doi.org/10.1118/1.2349696
Little MP, Wakeford R, Tawn EJ, Bouffler SD, Berrington de Gonzalez A. Risks associated with low doses and low dose rates of ionizing radiation: why linearity may be (almost) the best we can do. Radiology. 2009;251(1):6-12. https://doi.org/10.1148/radiol.2511081686
Fraass B, Doppke K, Hunt M, et al. AAPM TG 53. Quality assurance for clinical radiotherapy treatment planning. Med Phys. 1998;25(10):1773-1829.
Siochi RA, Balter P, Bloch CD, et al. Report of Task Group 201 of the American Association of Physicists in Medicine: Quality management of external beam therapy data transfer. Med Phys. 2021. https://doi.org/10.1002/mp.14868
Lehmann J, Alves A, Dunn L, et al. Dosimetric end-to-end tests in a national audit of 3D conformal radiotherapy. Phys Imaging Radiat Oncol. 2018;6(October 2017):5-11. https://doi.org/10.1016/j.phro.2018.03.006
Yeung TK, Bortolotto K, Cosby S, Hoar M, Lederer E. Quality assurance in radiotherapy: evaluation of errors and incidents recorded over a 10 year period. Radiother Oncol. 2005;74(3):283-291. https://doi.org/10.1016/j.radonc.2004.12.003
Oh Y, Shin DO, Kim J, et al. Proposal on Guideline for Quality Assurance of Radiation Treatment Planning System. Prog Med Phys. 2017;28(4):197. https://doi.org/10.14316/pmp.2017.28.4.197
Kerns JR, Stingo F, Followill DS, Howell RM, Melancon A, Kry SF. Treatment Planning System Calculation Errors Are Present in Most Imaging and Radiation Oncology Core-Houston Phantom Failures. Int J Radiat Oncol Biol Phys. 2017;98(5):1197-1203. https://doi.org/10.1016/j.ijrobp.2017.03.049
Derreumaux S, Etard C, Huet C, et al. Lessons from recent accidents in radiation therapy in France. Radiat Prot Dosimetry. 2008;131(1):130-135. https://doi.org/10.1093/rpd/ncn235
Proyecto MARR (Matrices de riesgo en radioterapia). 2016. http://www.sefm.es/new/download/1.-MARR-Documento-MARR.pdf.
Ezzell G a., Galvin JM, Low D, et al. Guidance document on delivery, treatment planning, and clinical implementation of IMRT: Report of the IMRT subcommittee of the AAPM radiation therapy committee. Med Phys. 2003;30(8):2089. https://doi.org/10.1118/1.1591194
Mijnheer B GD. Guidelines for the verification of IMRT. Physics for Clinical Radiotherapy. Bookl no 9 Brussels ESTRO. 2008.
Palmer AL, Nash D, Kearton JR, Jafari SM, Muscat S. A multicentre “end to end” dosimetry audit of motion management (4DCT-defined motion envelope) in radiotherapy. Radiother Oncol J Eur Soc Ther Radiol Oncol. 2017;125(3):453-458. https://doi.org/10.1016/j.radonc.2017.09.033
Chow JCL, Grigorov GN. Surface dosimetry for oblique tangential photon beams: A Monte Carlo simulation study. Med Phys. 2008;35(1):70. https://doi.org/10.1118/1.2818956
Kry SF, Bednarz B, Howell RM, et al. AAPM TG 158: Measurement and calculation of doses outside the treated volume from external-beam radiation therapy. Med Phys. 2017. https://doi.org/10.1002/mp.12462
Thwaites D. Accuracy required and achievable in radiotherapy dosimetry: Have modern technology and techniques changed our views? J Phys Conf Ser. 2013;444(1). https://doi.org/10.1088/1742-6596/444/1/012006
Ibbott GS, Thwaites DI. Audits for advanced treatment dosimetry. J Phys Conf Ser. 2015;573(1). https://doi.org/10.1088/1742-6596/573/1/012002
Gershkevitsh E, Pesznyak C, Petrovic B, et al. Dosimetric inter-institutional comparison in European radiotherapy centres: Results of IAEA supported treatment planning system audit. Acta Oncol (Madr). 2014;53(5):628-636. https://doi.org/10.3109/0284186X.2013.840742
Melidis C, Bosch WR, Izewska J, et al. Global harmonization of quality assurance naming conventions in radiation therapy clinical trials. Int J Radiat Oncol Biol Phys. 2014;90(5):1242-1249. https://doi.org/10.1016/j.ijrobp.2014.08.348
Kron T, Haworth A, Williams I. Dosimetry for audit and clinical trials: Challenges and requirements. J Phys Conf Ser. 2013;444(1). https://doi.org/10.1088/1742-6596/444/1/012014
Lee J, Mayles HMO, Baker C, Jafari S, Distefano G, Clark C. UK SABR Consortium Lung Dosimetry Audit; relative dosimetry results. Radiother Oncol. 2015;115:95-96. https://doi.org/10.1016/S0167-8140(15)40152-5
Izewska J, Wesolowska P, Azangwe G, et al. Testing the methodology for dosimetry audit of heterogeneity corrections and small MLC-shaped fields: Results of IAEA multi-center studies. Acta Oncol (Madr). 2016;55(7):909-916. https://doi.org/10.3109/0284186X.2016.1139180
Weber DC, Poortmans PMP, Hurkmans CW, Aird E, Gulyban A, Fairchild A. Quality assurance for prospective EORTC radiation oncology trials: the challenges of advanced technology in a multicenter international setting. Radiother Oncol J Eur Soc Ther Radiol Oncol. 2011;100(1):150-156. https://doi.org/10.1016/j.radonc.2011.05.073
Weber DC, Vallet V, Molineu A, et al. IMRT Credentialing for Prospective Trials Using Institutional Virtual Phantoms: Results of a Joint European Organization for the Research and Treatment of Cancer and Radiological Physics Center Project.; 2014. https://doi.org/10.1186/1748-717X-9-123
Alvarez P, Molineu A, Lowenstein J, Taylor P, Kry S, Followill D. SU-F-T-485: Independent Remote Audits for TG51 NonCompliant Photon Beams Performed by the IROC Houston QA Center. Med Phys. 2016;43(6Part20):3574. https://doi.org/10.1118/1.4956670
Kry SF, Dromgoole L, Alvarez P, et al. Radiotherapy deficiencies identified during on-site dosimetry visits by the IROC HoustonQA Center. Int J Radiat Oncol Biol Phys. 2017;99(5):1094-1100. https://doi.org/10.1016/j.ijrobp.2017.08.013
Miles E, Venables K. Radiotherapy quality assurance: facilitation of radiotherapy research and implementation of technology. Clin Oncol (R Coll Radiol). 2012;24(10):710-712. https://doi.org/10.1016/j.clon.2012.06.006
Ishikura S, Ito Y, Hiraoka M. JCOG Radiation Therapy Study Group: history and achievements. Jpn J Clin Oncol. 2011;41(11):1241-1243. https://doi.org/10.1093/jjco/hyr126
Pasler M, Hernandez V, Jornet N, Clark CH. Novel methodologies for dosimetry audits: Adapting to advanced radiotherapy techniques. Phys Imaging Radiat Oncol. 2018;5(September 2017):76-84. https://doi.org/10.1016/j.phro.2018.03.002
McGarry CK, Agnew CE, Hussein M, et al. The role of complexity metrics in a multi-institutional dosimetry audit of VMAT. Br J Radiol. 2016;89(1057). https://doi.org/10.1259/bjr.20150445
Tsang Y, Ciurlionis L, Clark C, Venables K, On UK. Development of a novel treatment planning test for credentialing rotational intensity-modulated radio-therapy techniques in the UK. Br J Radiol. 2013;86. https://doi.org/10.1259/bjr.20120315
Jornet N, Carrasco P, Beltrán M, et al. Multicentre validation of IMRT pre-treatment verification: comparison of in-house and external audit. Radiother Oncol. 2014;112(3):381-388. https://doi.org/10.1016/j.radonc.2014.06.016
Clark CH, Hussein M, Tsang Y, et al. A multi-institutional dosimetry audit of rotational intensity-modulated radiotherapy. Radiother Oncol. 2014;113(2):272-278. https://doi.org/10.1016/J.RADONC.2014.11.015
Jurado-Bruggeman D, Hernández V, Sáez J, et al. Multi-centre audit of VMAT planning and pre-treatment verification. Radiother Oncol. 2017;124(2):302-310. https://doi.org/10.1016/j.radonc.2017.05.019
Hussein M, Tsang Y, Thomas RAS, et al. A methodology for dosimetry audit of rotational radiotherapy using a commercial detector array. Radiother Oncol J Eur Soc Ther Radiol Oncol. 2013;108(1):78-85. https://doi.org/10.1016/j.radonc.2013.05.027
Spreeuw H, Rozendaal R, Olaciregui-ruiz I, Mans A, Mijnheer B, Herk M Van. Online 3D EPID-based dose verification : proof of concept. Med Phys. 2016;43(7):1-13. https://doi.org/10.1118/1.4952729
Olaciregui-Ruiz I, Rozendaal R, Mijnheer B, van Herk M, Mans a. Automatic in vivo portal dosimetry of all treatments. Phys Med Biol. 2013;58(22):8253-8264. https://doi.org/10.1088/0031-9155/58/22/8253
Woodruff HC, Fuangrod T, Van Uytven E, et al. First Experience With Real-Time EPID-Based Delivery Verification During IMRT and VMAT Sessions. Int J Radiat Oncol Biol Phys. 2015;93(3):516-522. https://doi.org/10.1016/j.ijrobp.2015.07.2271
Fuangrod T, Greer PB, Woodruff HC, et al. Investigation of a real-time EPID-based patient dose monitoring safety system using site-specific control limits. Radiat Oncol. 2016. https://doi.org/10.1186/s13014-016-0682-y
Passarge M, Fix MK, Manser P, Stampanoni MFM, Siebers J V. A Swiss cheese error detection method for real-time EPID-based quality assurance and error prevention. Med Phys. 2017;44(4):1212-1223. https://doi.org/10.1002/mp.12142
Thoelking J, Fleckenstein J, Sekar Y, et al. Patient-specific online dose verification based on transmission detector measurements. Radiother Oncol J Eur Soc Ther Radiol Oncol. 2016;119(2):351-356. https://doi.org/10.1016/j.radonc.2016.04.003
Hoffman D, Chung E, Hess | Clayton, Stern R, Benedict S. Characterization and evaluation of an integrated quality monitoring system for online quality assurance of external beam radiation therapy. J Appl Clin Med Phys. 2017;18:40-48. https://doi.org/10.1002/acm2.12014
Islam MK, Norrlinger BD, Smale JR, et al. An integral quality monitoring system for real-time verification of intensity modulated radiation therapy. Med Phys. 2009;36(12):5420-5428. https://doi.org/10.1118/1.3250859
Pasler M, Michel K, Marrazzo L, et al. Error detection capability of a novel transmission detector: a validation study for online VMAT monitoring. Phys Med Biol. 2017;62(18):7440-7450. https://doi.org/10.1088/1361-6560/aa7dc7
Boylan CJ, Aitkenhead AH, Rowbottom CG, Mackay RI. Simulation of realistic linac motion improves the accuracy of a Monte Carlo based VMAT plan QA system. Radiother Oncol J Eur Soc Ther Radiol Oncol. 2013;109(3):377-383. https://doi.org/10.1016/j.radonc.2013.08.046
Kerns JR, Childress N, Kry SF. A Multi-Institution Evaluation of MLC Log Files and Performance in IMRT Delivery.; Radiat Oncol. 2014. https://doi.org/10.1186/1748-717X-9-176
Clark CH, Ga Aird E, Bolton S, et al. Radiotherapy dosimetry audit: Three decades of improving standards and accuracy in UK clinical practice and trials. Br J Radiol. 2015;88(1055). https://doi.org/10.1259/bjr.20150251
Followill DS, Evans DR, Cherry C, et al. Design, development, and implementation of the radiological physics center’s pelvis and thorax anthropomorphic quality assurance phantoms. Med Phys. 2007;34(6):2070-2076. https://doi.org/10.1118/1.2737158
Distefano G, Lee J, Jafari S, et al. A national dosimetry audit for stereotactic ablative radiotherapy in lung. Radiother Oncol. 2017;122(3):406-410. https://doi.org/10.1016/j.radonc.2016.12.016
Lambrecht M, Melidis C, Sonke J-J, et al. Lungtech, a phase II EORTC trial of SBRT for centrally located lung tumours-a clinical physics perspective. Radiat Oncol. 2016. https://doi.org/10.1186/s13014-015-0567-5
Clark CH, Hurkmans CW, Kry SF. The role of dosimetry audit in lung SBRT multi-centre clinical trials. Phys medica. 2017;44:171-176. https://doi.org/10.1016/j.ejmp.2017.04.003
Molineu A, Hernandez N, Nguyen T, Ibbott G, Followill D. Credentialing results from IMRT irradiations of an anthropomorphic head and neck phantom. Med Phys. 2013;40(2):1-8. https://doi.org/10.1118/1.4773309
Lechner W, Wesolowska P, Azangwe G, et al. A multinational audit of small field output factors calculated by treatment planning systems used in radiotherapy. Phys Imaging Radiat Oncol. 2018;5(February):58-63. https://doi.org/10.1016/j.phro.2018.02.005
Followill DS, Kry SF, Qin L, et al. The Radiological Physics Center's standard dataset for small field size output factors J Appl Clin Med Phys. Vol 13.; 2012. https://doi.org/10.1120/jacmp.v13i5.3962
Kerns JR, Followill DS, Lowenstein J, et al. Agreement Between Institutional Measurements and Treatment Planning System Calculations for Basic Dosimetric Parameters as Measured by the Imaging and Radiation Oncology Core-Houston HHS Public Access. Int J Radiat Oncol Biol Phys. 2016;95(5):1527-1534. https://doi.org/10.1016/j.ijrobp.2016.03.035
Kry SF. Beyond auditing : What we have learned from phantom credentialing for clinical trials. 2014.
Seravalli E, Houweling AC, Van Battum L, et al. Auditing local methods for quality assurance in radiotherapy using the same set of predefined treatment plans. Phys Imaging Radiat Oncol. 2018;5(September 2017):19-25. https://doi.org/10.1016/j.phro.2018.01.002
Followill DS, Clark CH, Kron T. Clinical 3D Dosimetry in Modern Radiation Therapy. 1st ed. CRC Press; 2017.
Pulliam KB, Huang JY, Howell RM, et al. Comparison of 2D and 3D gamma analyses. Med Phys. 2014;41(2):021710. https://doi.org/10.1118/1.4860195
Ibbott GS. QA in radiation therapy: The RPC perspective. J Phys Conf Ser. 2010;250:1-7. https://doi.org/10.1088/1742-6596/250/1/012001
Hernandez V, Hansen CR, Widesott L, et al. What is plan quality in radiotherapy? The importance of evaluating dose metrics, complexity, and robustness of treatment plans. Radiother Oncol. 2020;153(xxxx):26-33. https://doi.org/10.1016/j.radonc.2020.09.038
Hansen CR, Hussein M, Bernchou U, Zukauskaite R, Thwaites D. Plan quality in radiotherapy treatment planning - Review of the factors and challenges. J Med Imaging Radiat Oncol. 2022;66(2):267-278. https://doi.org/10.1111/1754-9485.13374
Dionisi F, Fiorica F, D’Angelo E, et al. Organs at risk’s tolerance and dose limits for head and neck cancer re-irradiation: A literature review. Oral Oncol. 2019;98:35-47. https://doi.org/10.1016/j.oraloncology.2019.08.017
DeLuca PM, Seltzer SM. ICRU Report 83. ICRU Rep 83. 2008;8(2):1-98. https://doi.org/10.1093/jicru/ndn032
Hansen CR, Friborg J, Jensen K, et al. NTCP model validation method for DAHANCA patient selection of protons versus photons in head and neck cancer radiotherapy. Acta Oncol (Madr). 2019;58(10):1410-1415. https://doi.org/10.1080/0284186X.2019.1654129
Wilke L, Andratschke N, Guckenberger M, et al. ICRU report 91 on prescribing, recording, and reporting of stereotactic treatments with small photon beams. Strahlentherapie und Onkol. 195(3):193-198. http://inis.iaea.org/search/search.aspx?orig_q=RN:51000335.
Akpati H, Kim C, Kim B, Park T, Meek A. Unified Dosimetry Index (UDI): A Figure of Merit for Ranking Treatment Plans; J Appl Clin Med Phys, Vol 9.; 2008. https://doi.org/10.1120/jacmp.v9i3.2803
Ruan D, Shao W, Demarco J, et al. Evolving treatment plan quality criteria from institution-specific experience. Med Phys. 2012;39(5):2708-2712. https://doi.org/10.1118/1.4704497
Ventura T, Do M, Lopes C, Ferreira BC, Khouri L. ScienceDirect SPIDERplan: A tool to support decision-making in radiation therapy treatment plan assessment. Rep Pract Oncol Radiother. 2016. https://doi.org/10.1016/j.rpor.2016.07.002
Mambretti M, Romanò C, Marvaso G, et al. A global Unified Dosimetry Index (gUDI) to evaluate simultaneous integrated boost radiotherapy plans in prostate cancer. Radiother Oncol . 2018;128(2):315-320. https://doi.org/10.1016/j.radonc.2018.06.002
Nelms BE, Robinson G, Markham J, et al. Variation in external beam treatment plan quality: An inter-institutional study of planners and planning systems. Pract Radiat Oncol. 2012;2(4):296-305. https://doi.org/10.1016/j.prro.2011.11.012
Ahmed S, Nelms B, Gintz D, et al. A method for a priori estimation of best feasible DVH for organs-at-risk: Validation for head and neck VMAT planning. Med Phys. 2017;44(10):5486-5497. https://doi.org/10.1002/mp.12500
Stroom JC, de Boer HCJ, Huizenga H, Visser AG. Inclusion of geometrical uncertainties in radiotherapy treatment planning by means of coverage probability. Int J Radiat Oncol Biol Phys. 1999;43(4):905-919. https://doi.org/10.1016/S0360-3016(98)00468-4
van Herk M, Remeijer P, Rasch C, Lebesque J V. The probability of correct target dosage: dose-population histograms for deriving treatment margins in radiotherapy. Int J Radiat Oncol Biol Phys. 2000;47(4):1121-1135. https://doi.org/10.1016/S0360-3016(00)00518-6
Liu PZY, Reggiori G, Lobefalo F, et al. Small field correction factors for the IBA Razor. Phys Medica. 2016;32(8):1025-1029. https://doi.org/10.1016/j.ejmp.2016.07.004
McKenzie A, van Herk M, Mijnheer B. Margins for geometric uncertainty around organs at risk in radiotherapy. Radiother Oncol. 2002;62(3):299-307. https://doi.org/10.1016/S0167-8140(02)00015-4
Stroom JC, Heijmen BJM. Limitations of the planning organ at risk volume (PRV) concept. Int J Radiat Oncol. 2006;66(1):279-286. https://doi.org/10.1016/j.ijrobp.2006.05.009
Sterpin E. Potential pitfalls of the PTV concept in dose-to-medium planning optimization. Phys Medica. 2016;32(9):1103-1110. https://doi.org/10.1016/j.ejmp.2016.08.009
Unkelbach J, Alber M, Bangert M, et al. Robust radiotherapy planning. Phys Med Biol. 2018;63(22):22TR02. https://doi.org/10.1088/1361-6560/aae659
Hong L, Alektiar K, Chui C, et al. IMRT of large fields: whole-abdomen irradiation. Int J Radiat Oncol. 2002;54(1):278-289. https://doi.org/10.1016/S0360-3016(02)02921-8
Evans PM, Donovan EM, Partridge M, et al. The delivery of intensity modulated radiotherapy to the breast using multiple static fields. Radiother Oncol. 2000;57(1):79-89. https://doi.org/10.1016/s0167-8140(00)00263-2
Sankar A, Velmurugan J. Different intensity extension methods and their impact on entrance dose in breast radiotherapy: A study. J Med Phys. 2009;34(4):200-205. https://doi.org/10.4103/0971-6203.56079
Lizondo M, Latorre-Musoll A, Ribas M, et al. Pseudo skin flash on VMAT in breast radiotherapy: Optimization of virtual bolus thickness and HU values. Phys medica. 2019;63:56-62. https://doi.org/10.1016/j.ejmp.2019.05.010
Wiant D, Vanderstraeten C, Maurer J, Pursley J, Terrell J, Sintay BJ. On the validity of density overrides for VMAT lung SBRT planning. Med Phys. 2014;41(8):81707. https://doi.org/10.1118/1.4887778
Healy GEA, Marsh SH, Cousins AT. The dosimetric effect of electron density overrides in 3DCRT Lung SBRT for a range of lung tumor dimensions. J Appl Clin Med Phys. 2018;19(6):79-87. https://doi.org/10.1002/acm2.12446
Crowe SB, Kairn T, Middlebrook N, et al. Examination of the properties of IMRT and VMAT beams and evaluation against pre-treatment quality assurance results. Phys Med Biol. 2015;60(6):2587-2601. https://doi.org/10.1088/0031-9155/60/6/2587
Du W, Cho SH, Zhang X, Hoffman KE, Kudchadker RJ. Quantification of beam complexity in intensity-modulated radiation therapy treatment plans. Med Phys. 2014;41(2):021716. https://doi.org/10.1118/1.4861821
McNiven AL, Sharpe MB, Purdie TG. A new metric for assessing IMRT modulation complexity and plan deliverability. Med Phys. 2010;37(2):505-515. https://doi.org/10.1118/1.3276775
Younge KC, Matuszak MM, Moran JM, Mcshan DL, Fraass BA. Penalization of aperture complexity in inversely planned volumetric modulated arc therapy. Med Phys. 2012;39(11):7160-7170.
Götstedt J, Hauer AK, Bäck A. Complexity metric as a complement to measurement based IMRT/VMAT patient-specific QA. J Phys Conf Ser. 2015;573(1):6-10. https://doi.org/10.1088/1742-6596/573/1/012016
Kairn T, Crowe SB, Kenny J, Knight RT, Trapp J V. Predicting the likelihood of QA failure using treatment plan accuracy metrics. J Phys Conf Ser. 2014;489(1). https://doi.org/10.1088/1742-6596/489/1/012051
Masi L, Doro R, Favuzza V, Cipressi S, Livi L. Impact of plan parameters on the dosimetric accuracy of volumetric modulated arc therapy. Med Phys. 2013;40(7). https://doi.org/10.1118/1.4810969
Park JM, Park S-Y, Kim H. Modulation index for VMAT considering both mechanical and dose calculation uncertainties. Phys Med Biol. 2015;60(18):7101-7125. https://doi.org/10.1088/0031-9155/60/18/7101
Min Park J, Park SY, Kim H, Ho Kim J, Carlson J, Ye SJ. Modulation indices for volumetric modulated arc therapy. Phys Med Biol. 2014;59(23):7315-7340. https://doi.org/10.1088/0031-9155/59/23/7315
Craft D, Süss P, Bortfeld T. The tradeoff between treatment plan quality and required number of monitor units in intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys. 2007;67(5):1596-1605. https://doi.org/10.1016/j.ijrobp.2006.11.034
Scaggion A, Fusella M, Agnello G, et al. Limiting treatment plan complexity by applying a novel commercial tool. J Appl Clin Med Phys. 2020;21(8):27-34. https://doi.org/10.1002/acm2.12908
Glenn MC, Hernandez V, Saez J, Followill DS, Howell RM. Treatment plan complexity does not predict IROC Houston anthropomorphic head and neck phantom performance. Phys Med Biol. 2018. 17;63(20):205015. https://doi.org/10.1088/1361-6560/aae29e
Hernandez V, Vera-Sánchez JA, Vieillevigne L, Khamphan C, Saez J. A new method for modelling the tongue-and-groove in treatment planning systems. Phys Med Biol. 2018;63(24). https://doi.org/10.1088/1361-6560/aaf098
Kamperis E, Kodona C, Hatziioannou K, Giannouzakos V. Complexity in Radiation Therapy: It’s Complicated. Int J Radiat Oncol Biol Phys. 2020;106(1):182-184. https://doi.org/10.1016/j.ijrobp.2019.09.003
Khoo VS, Bedford JL, Webb S, Dearnaley DP. Class solutions for conformal external beam prostate radiotherapy. Int J Radiat Oncol Biol Phys. 2003;55(4):1109-1120. https://doi.org/10.1016/s0360-3016(02)04393-6
Weksberg DC, Palmer MB, Vu KN, et al. Generalizable class solutions for treatment planning of spinal stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys. 2012;84(3):847-853. https://doi.org/10.1016/j.ijrobp.2011.12.060
Netherlands Commission on Radiation Dosimetry. Subcommittee VMAT QA. Code of Practice for the Quality Assurance and Control for Volumetric Modulated Arc Therapy. NCS Report 24. 2015;(February):65.
Commissie N, Stralingsdosimetrie V. Code of Practice for the Quality Assurance and Control for Intensity Modulated Radiotherapy Disclaimer regarding NCS reports. 2013;(June).
Babier A, Boutilier JJ, Sharpe MB, McNiven AL, Chan TCY. Inverse optimization of objective function weights for treatment planning using clinical dose-volume histograms. Phys Med Biol. 2018;63(10):105004. https://doi.org/10.1088/1361-6560/aabd14
Gallio E, Giglioli FR, Girardi A, et al. Evaluation of a commercial automatic treatment planning system for liver stereotactic body radiation therapy treatments. Phys Medica. 2018;46(March):153-159. https://doi.org/10.1016/j.ejmp.2018.01.016
Harms WBS, Low DA, Wong JW, Purdy JA. A software tool for the quantitative evaluation of 3D dose calculation algorithms. Med Phys. 1998;25(10):1830-1836. https://doi.org/10.1118/1.598363
Low D a, Harms WB, Mutic S, Purdy J a. A technique for the quantitative evaluation of dose distributions. Med Phys. 1998;25(5):656-661. http://www.ncbi.nlm.nih.gov/pubmed/9608475.
Depuydt T, Van Esch A, Huyskens DP. A quantitative evaluation of IMRT dose distributions: refinement and clinical assessment of the gamma evaluation. Radiother Oncol. 2002;62(3):309-319. https://doi.org/10.1016/s0167-8140(01)00497-2
Moran JM, Radawski J, Fraass BA. A gradient analysis tool for IMRT QA. J Appl Clin Med Phys. 2005:62-73.
Childress NL, Rosen II. The design and testing of novel clinical parameters for dose comparison. Int J Radiat Oncol Biol Phys. 2003;56(5):1464-1479. https://doi.org/10.1016/s0360-3016(03)00430-9
Bakai A, Alber M, Nüsslin F. A revision of the gamma-evaluation concept for the comparison of dose distributions. Phys Med Biol. 2003;48(21):3543-3553. https://doi.org/10.1088/0031-9155/48/21/006
Peng J, Shi C, Laugeman E, et al. Implementation of the structural SIMilarity (SSIM) index as a quantitative evaluation tool for dose distribution error detection. Med Phys. 2020;47(4):1907-1919. https://doi.org/10.1002/mp.14010
Ju T, Simpson T, Deasy JO, Low DA. Geometric interpretation of the gamma dose distribution comparison technique: interpolation-free calculation. Med Phys. 2008;35(3):879-887. https://doi.org/10.1118/1.2836952
Nelms BE, Zhen H, Tomé W a. Per-beam, planar IMRT QA passing rates do not predict clinically relevant patient dose errors. Med Phys. 2011;38(2):1037. https://doi.org/10.1118/1.3544657
Zhen H, Nelms BE, Tome W a. Moving from gamma passing rates to patient DVH-based QA metrics in pretreatment dose QA. Med Phys. 2011;38(10):5477-5489. https://doi.org/10.1118/1.3633904
Gutiérrez FC, Vara CP. Validación de un sistema de control de calidad pre-tratamiento 3D en técnicas volumétricas basado en matrices bidimensionales de detectores. Revista de física médica. 2015;16(1):11-32.
Garcia-Romero A, Hernandez-Vitoria A, Millan-Cebrian E, Alba-Escorihuela V, Serrano-Zabaleta S, Ortega-Pardina P. On the new metrics for IMRT QA verification. Med Phys. 2016;43(11):6058-6071. https://doi.org/10.1118/1.4964796
Vicini F a, Martinez A, Hanks G, et al. An interinstitutional and interspecialty comparison of treatment outcome data for patients with prostate carcinoma based on predefined prognostic categories and minimum follow-up. Cancer. 2002;95(10):2126-2135. https://doi.org/10.1002/cncr.10919
Leybovich LB, Sethi A, Dogan N. Comparison of ionization chambers of various volumes for IMRT absolute dose verification. Med Phys. 2003;30(2):119-123. https://doi.org/10.1118/1.1536161
Carrasco P, Jornet N, Latorre A, Eudaldo T, Ruiz A, Ribas M. 3D DVH-based metric analysis versus per-beam planar analysis in IMRT pretreatment verification. Med Phys. 2012;39(8):5040-5049. https://doi.org/10.1118/1.4736949
Ling CC, Zhang P, Archambault Y, Bocanek J, Tang G, Losasso T. Commissioning and quality assurance of RapidArc radiotherapy delivery system. Int J Radiat Oncol Biol Phys. 2008;72(2):575-581. https://doi.org/10.1016/j.ijrobp.2008.05.060
Szczurek L, Juszkat RI, Szczurek J, Turek I, Sosnowski P. Pre-treatment 2D and 3D dosimetric verification of volumetric arc therapy. A correlation study between gamma index passing rate and clinical dose volume histogram. PLoS One. 2019. https://doi.org/10.1371/journal.pone.0221086
Niroomand-Rad A, Chiu-Tsao S-T, Grams MP, et al. Report of AAPM Task Group 235 Radiochromic Film Dosimetry: An Update to TG-55. Med Phys. 2020;47(12):5986-6025. https://doi.org/10.1002/mp.14497
Maraghechi B, Davis J, Mitchell N, et al. The sensitivity of gamma index analysis to detect multileaf collimator (MLC) positioning errors using Varian TrueBeam EPID and ArcCHECK for patient-specific prostate volumetric-modulated arc therapy (VMAT) quality assurance. J Radiother Pract. 2018;17(1):66-77. https://doi.org/10.1017/S1460396917000425
Chae S-M, Lee GW, Son SH. The effect of multileaf collimator leaf width on the radiosurgery planning for spine lesion treatment in terms of the modulated techniques and target complexity. Radiat Oncol. 2014;9(1):72. https://doi.org/10.1186/1748-717X-9-72
Woon W, Ravindran PB, Ekanayake P, Vikraman S, Lim YYF, Khalid J. A study on the effect of detector resolution on gamma index passing rate for VMAT and IMRT QA. J Appl Clin Med Phys. 2018;19(2):230-248. https://doi.org/10.1002/acm2.12285
Bresciani S, Poli M, Miranti A, et al. Comparison of two different EPID-based solutions performing pretreatment quality assurance: 2D portal dosimetry versus 3D forward projection method. Phys Medica. 2018;52(June):65-71. https://doi.org/10.1016/j.ejmp.2018.06.005
Chaswal V, Weldon M, Gupta N, Chakravarti A, Rong Y. Commissioning and comprehensive evaluation of the ArcCHECK cylindrical diode array for VMAT pretreatment delivery QA. J Appl Clin Med Phys. 2014;15(4):212-225. https://doi.org/10.1120/jacmp.v15i4.4832
Fontenot JD. Evaluation of a novel secondary check tool for intensity-modulated radiotherapy treatment planning. J Appl Clin Med Phys. 2014;15(5):207-215.
Clemente-Gutiérrez F, Pérez-Vara C. Dosimetric validation and clinical implementation of two 3D dose verification systems for quality assurance in volumetric-modulated arc therapy techniques. J Appl Clin Med Phys. 2015;16(2):198-217. https://doi.org/10.1120/jacmp.v16i2.5190
Greer PB. 3D EPID based dosimetry for pre-treatment verification of VMAT - Methods and challenges. J Phys Conf Ser. 2013;444(1). https://doi.org/10.1088/1742-6596/444/1/012010
Alani S, Schlocker A, Honig N. Statistical Process Control for VMAT Pre-Treatment Verification QA Using ArcCHECK and Mobius3D. Med Phys. Vol 42.; 2015. https://doi.org/10.1118/1.4923932
Han C, Yi J, Zhu K, et al. Cross verification of independent dose recalculation, log files based, and phantom measurement-based pretreatment quality assurance for volumetric modulated arc therapy. J Appl Clin Med Phys. 2020;21(11):98-104. https://doi.org/10.1002/acm2.13036
Boggula R, Lorenz F, Mueller L, et al. Experimental validation of a commercial 3D dose verification system for intensity-modulated arc therapies. Phys Med Biol. 2010;55(19):5619-5633. https://doi.org/10.1088/0031-9155/55/19/001
Bakhtiari M, Parniani A, Lerma F, et al. Evaluation of a software system for estimating planned dose error in patients, based on planar IMRT QA measurements. Radiol Oncol. 2014;48(1):87-93. https://doi.org/10.2478/raon-2013-0042
Bedford JL, Lee YK, Wai P, South CP, Warrington AP. Evaluation of the Delta4 phantom for IMRT and VMAT verification. Phys Med Biol. 2009;54(9):N167-76. https://doi.org/10.1088/0031-9155/54/9/N04
Podesta M, Persoon LCGG, Verhaegen F. A novel time dependent gamma evaluation function for dynamic 2D and 3D dose distributions. Phys Med Biol. 2014;59(20):5973-5985. https://doi.org/10.1088/0031-9155/59/20/5973
Alharthi T, Pogson EM, Arumugam S, Holloway L, Thwaites D. Pre-treatment verification of lung SBRT VMAT plans with delivery errors: Toward a better understanding of the gamma index analysis. Phys Medica. 2018;49:119-128. https://doi.org/10.1016/J.EJMP.2018.04.005
Petrucci E, Radici L, Borca VC, Ferrario S, Paolini M, Pasquino M. Delta(4) Discover transmission detector: A comprehensive characterization for in-vivo VMAT monitoring. Phys medica. 2021;85:15-23. https://doi.org/10.1016/j.ejmp.2021.04.017
Colussi VC, Beddar AS, Kinsella TJ, Sibata CH. In vivo dosimetry using a single diode for megavoltage photon beam radiotherapy: implementation and response characterization. J Appl Clin Med Phys. 2001;2(4):210-218. https://doi.org/10.1120/jacmp.v2i4.2598
Jornet N, Ribas M, Eudaldo T. In vivo dosimetry: Intercomparison between p-type based and n-type based diodes for the 16–25 MV energy range. Med Phys. 2000;27(6):1287-1293. https://doi.org/10.1118/1.599013
Ghafarian M, Price M, Morales-Paliza M. Comparison of pretreatment VMAT quality assurance with the integral quality monitor (IQM) and electronic portal imaging device (EPID) EPID, IQM, pretreatment VMAT QA. J Appl Clin Med Phys. 2021;22(3):166-175. https://doi.org/10.1002/acm2.13201
Olaciregui-Ruiz I, Beddar S, Greer P, et al. In vivo dosimetry in external beam photon radiotherapy: Requirements and future directions for research, development, and clinical practice. Phys Imaging Radiat Oncol. 2020;15(March):108-116. https://doi.org/10.1016/j.phro.2020.08.003
Bossuyt E, Weytjens R, Nevens D, Vos S De, Verellen D. Evaluation of automated pre-treatment and transit in-vivo dosimetry in radiotherapy using empirically determined parameters. Phys Imaging Radiat Oncol. 2020;16(November):113-129.
Fawcett T. An introduction to ROC analysis. Pattern Recognit Lett. 2006;27(8):861-874. https://doi.org/10.1016/j.patrec.2005.10.010
Brown CD, Davis HT. Receiver operating characteristics curves and related decision measures: A tutorial. Chemom Intell Lab Syst. 2006;80(1):24-38. https://doi.org/10.1016/j.chemolab.2005.05.004
Zweig MH, Campbell G. Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem. 1993;39(4):561-577.
Carlone M, Cruje C, Rangel A, McCabe R, Nielsen M, MacPherson M. ROC analysis in patient specific quality assurance. Med Phys. 2013;40(4):1-7. https://doi.org/10.1118/1.4795757
Shen Z, Tan X, Li S, et al. Correlation between the γ passing rates of IMRT plans and the volumes of air cavities and bony structures in head and neck cancer. Radiat Oncol. 2021;16(1):1-8. https://doi.org/10.1186/s13014-021-01861-y
Kim J in, Park SY, Kim HJ, Kim JH, Ye SJ, Park JM. The sensitivity of gamma-index method to the positioning errors of high-definition MLC in patient-specific VMAT QA for SBRT. Radiat Oncol. 2014;9(1):1-12. https://doi.org/10.1186/1748-717X-9-167
Kim JI, Kim JH, Park JM. Gamma analysis with a gamma criterion of 2%/1 mm for stereotactic ablative radiotherapy delivered with volumetric modulated arc therapy technique: A single institution experience. Oncotarget. 2017;8(44):76076-76084. https://doi.org/10.18632/oncotarget.18530
Schmitt D, Blanck O, Gauer T, et al. Technological quality requirements for stereotactic radiotherapy: Expert review group consensus from the DGMP Working Group for Physics and Technology in Stereotactic Radiotherapy. Strahlentherapie und Onkol. 2020;196(5):421-443. https://doi.org/10.1007/s00066-020-01583-2
Agnew CE, McGarry CK. A tool to include gamma analysis software into a quality assurance program. Radiother Oncol. 2016;118(3):568-573. https://doi.org/10.1016/j.radonc.2015.11.034
Hussein M, Clementel E, Eaton DJ, et al. A virtual dosimetry audit - Towards transferability of gamma index analysis between clinical trial QA groups. Radiother Oncol . 2017;125(3):398-404. https://doi.org/10.1016/j.radonc.2017.10.012
Chan MF, Witztum A, Valdes G. Integration of AI and Machine Learning in Radiotherapy QA. Front Artif Intell. 2020;3(September):1-8. https://doi.org/10.3389/frai.2020.577620
Li J, Wang L, Zhang X, et al. Machine Learning for Patient-Specific Quality Assurance of VMAT: Prediction and Classification Accuracy. Int J Radiat Oncol Biol Phys. 2019;105(4):893-902. https://doi.org/10.1016/j.ijrobp.2019.07.049
Valdes G, Scheuermann R, Hung CY, Olszanski A, Bellerive M, Solberg TD. A mathematical framework for virtual IMRT QA using machine learning. Med Phys. 2016;43(7):4323. https://doi.org/10.1118/1.4953835
Cilla S, Viola P, Romano C, et al. Prediction and classification of VMAT dosimetric accuracy using plan complexity and log-files analysis. Phys medica. 2022;103:76-88. https://doi.org/10.1016/j.ejmp.2022.10.004
Viola P, Romano C, Craus M, et al. Prediction of VMAT delivery accuracy using plan modulation complexity score and log-files analysis. Biomed Phys Eng Express. 2022;8(5):55020. https://doi.org/10.1088/2057-1976/ac82c6
Granville DA, Sutherland JG, Belec JG, Russa DJ La. Predicting VMAT patient-specific QA results using a support vector classifier trained on treatment plan characteristics and linac QC metrics. Phys Med Biol. 2019;64(January).
Interian Y, Rideout V, Kearney VP, et al. Deep nets vs expert designed features in medical physics: An IMRT QA case study. Med Phys. 2018;45(6):2672-2680. https://doi.org/10.1002/mp.12890
Tomori S, Kadoya N, Kajikawa T, et al. Systematic method for a deep learning-based prediction model for gamma evaluation in patient-specific quality assurance of volumetric modulated arc therapy. Med Phys. 2021;48(3):1003-1018. https://doi.org/10.1002/mp.14682
Lam D, Zhang X, Li H, et al. Predicting gamma passing rates for portal dosimetry-based IMRT QA using machine learning. Med Phys. 2019;46(10):4666-4675. https://doi.org/10.1002/mp.13752
Wang L, Li J, Zhang S, et al. Multi-task autoencoder based classification-regression model for patient-specific VMAT QA. Phys Med Biol. 2020;65(23):235023. https://doi.org/10.1088/1361-6560/abb31c
Hirashima H, Ono T, Nakamura M, et al. Improvement of prediction and classification performance for gamma passing rate by using plan complexity and dosiomics features. Radiother Oncol. 2020;153:250-257. https://doi.org/10.1016/j.radonc.2020.07.031
Huang Y, Pi Y, Ma K, et al. Virtual Patient-Specific Quality Assurance of IMRT Using UNet++: Classification, Gamma Passing Rates Prediction, and Dose Difference Prediction. Front Oncol. 2021;11. https://doi.org/10.3389/fonc.2021.700343
Lambri N, Hernandez V, Sáez J, et al. Multicentric evaluation of a machine learning model to streamline the radiotherapy patient specific quality assurance process. Phys medica. 2023;110:102593. https://doi.org/10.1016/j.ejmp.2023.102593
Qiu Z, Olberg S, den Hertog D, Ajdari A, Bortfeld T, Pursley J. Online adaptive planning methods for intensity-modulated radiotherapy. Phys Med Biol. 2023;68(10). https://doi.org/10.1088/1361-6560/accdb2
Carson ME, Molineu A, Taylor PA, Followill DS, Stingo FC, Kry SF. Examining credentialing criteria and poor performance indicators for IROC Houston’s anthropomorphic head and neck phantom. Med Phys. 2016;43(12):6491-6496. https://doi.org/10.1118/1.4967344