Medida del índice de dosis en TC de 320 filas de detectores

Autores/as

  • Zulima Aza Villarrubia Servicio de Radiofísica y Radioprotección. Hospital Universitario La Paz, Madrid.
  • Luis Alejo Luque Servicio de Radiofísica y Radioprotección. Hospital Universitario La Paz, Madrid.
  • Rodrigo Plaza Núñez Servicio de Radiofísica y Radioprotección. Hospital Universitario La Paz, Madrid.
  • Carlos Huerga Cabrerizo Servicio de Radiofísica y Radioprotección. Hospital Universitario La Paz, Madrid.
  • Eva Corredoira Silva Servicio de Radiofísica y Radioprotección. Hospital Universitario La Paz, Madrid.
  • Antonio Serrada Hierro Servicio de Radiofísica y Radioprotección. Hospital Universitario La Paz, Madrid.

Palabras clave:

Tomografía Computarizada (TC), Computed Tomography Dose Index (CTDI), espesor de radiación, maniquí

Resumen

Se presentan parte de las pruebas realizadas en la aceptación de un equipo de tomografía computarizada (TC) Canon Aquilion One que dispone de 320 filas de detectores y permite realizar adquisiciones con espesores de corte de hasta 160 mm, lo que es de gran utilidad en exploraciones a pacientes pediátricos. Las pruebas habituales del Protocolo Español de Control de Calidad en Radiodiagnóstico (PECCR) están contempladas para realizarse en escáneres con espesores de corte menores, de forma que se proponen y comparan otros métodos para evaluar el índice de dosis en TC (CTDI) en los que la anchura del haz de radiación es mayor que el detector utilizado habitualmente en los controles de calidad. Se han observado variaciones de hasta el 12% entre los diferentes métodos aplicados en espesores menores de 80 mm, y de hasta el 20% en los espesores mayores. Además, se hace una evaluación de la nueva métrica “dosis de equilibrio” en el maniquí TG200 de 600 mm de longitud, obteniendo resultados que concuerdan con la bibliografía, y se propone un método de evaluación del perfil de dosis longitudinal en adquisiciones axiales con placas radiocrómicas.

Referencias

Beister M, Kolditz D, et al. Iterative reconstruction methods in X-ray CT. Phys Med 2012;28:94-108.

Flohr TG, McCollough CH, et al. First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 2006; 16:256.

Mehta D, Thompson R, et al. Iterative model reconstruction: Simultaneously lowered computed tomography radiation dose and improved image quality. Med Phys Int 2013;02:147-55.

Calzado A, Geleijns J, Tomografía computarizada. Evolución, principios técnicos y aplicaciones. Rev Fis Med 2010; 11(3):163-80.

Sorantin E, Riccabona M, et al. Experience with volumetric (320 rows) pediatric CT. Eur J Radiol 2013;82:1091-7.

Gomà C, Ruiz A, et al. Radiation dose assessment in a 320-detector-row CT scanner used in cardiac imaging. Med Phys. 2011 Mar;38(3):1473-80.

Kroft LJ, Roelofs JJ, et al. Scan time and patient dose for thoracic imaging in neonates and small children using axial volumetric 320-detector row CT compared to helical 64-, 32-, and 16- detector row CT acquisitions. Pediatr Radiol 2010;41:294-300.

Einstein A, Elliston C,et al. Radiation dose from singleheartbeat coronary CT angiography performed with a 320-detector row volume scanner. Radiology 2010;254 3:698-706.

Seguchi S, Aoyama T, et al. Patient radiation dose in prospectively gated axial CT coronary angiography and retrospectively gated helical technique with a 320-detector row CT scanner. Med Phys 2010;37:5579-85.

Cros M, Geleijns J, et al. Perfusion CT of the brain and liver and of lung tumors: Use of Monte Carlo simulation for patient dose examinations with a cone-beam 320-MDCT scanner. AJR 2016;206:1,129-35.

SEFM-SEPR-SERAM. Protocolo Español de Control de Calidad en Radiodiagnóstico. Ed. 2011.

Dixon RL, Anderson JA, et al. Comprehensive methodology for the evaluation of radiation dose in X-ray computed tomography, Report of AAPM Task Group 111: The Future of CT Dosimetry. AAPM, College Park, MD, 2010.

Li, Zhang, and Liu: Calculations of dose metrics proposed by AAPM TG111. Med. Phys 2013;40(8).

ICRU 87, Radiation Dose and Image-Quality Assessment in Computed Tomography. Journal of the ICRU Volume 12 No 1 2012, Oxford University Press.

International Electrotechnical Commission. Medical Electrical Equipment—Part 2-44 Edition 3, Amendment 1: Particular Requirements for Basic Safety and Essential Performance of X-Ray Equipment for Computed Tomography, IEC-60601-2-44 —Edition 3, Amendment 1; 62B/804/CD, Committee Draft (CD), IEC Geneva (2010).

International Atomic Energy Agency. Status of Computed Tomography: Dosimetry for Wide Cone Beam Scanners. Human Health Series No. 5, IAEA (2011).

Salvadó M, Cros M, et al. Monte Carlo simulation of the dose distribution of ICRP adult reference computational phantoms for acquisitions with a 320 detector-row cone-beam CT scanner. Phy Med 2015;31:452-62.

Geleijns J, Artells MS, et al. Computed tomography dose assessment for a 160 mm wide, 320 detector row, cone beam CT scanner. Phys. Med. Biol 2009; 54 10:3141-59.

Albngali A, Shearer A, et al. CT Output Dose Performance-Conventional Approach Verses the Dose Equilibrium Method. Int J Med Phys Clin Eng Radiat Oncol 2018;7:15-26.

Campelo M, Silva M, et al. CTDI versus New AAPM Metrics to assess Doses in CT: a case study. Braz. J. Rad. Sci 2016; 4(2):15.

Descamps C, Gonzalez M, et al. Measurements of the dose delivered during CT exams using AAPM Task Group Report No. 111. J Appl Clin Med Phys. 2012;13(6):3934.

Mori S, Endo M, et al. Enlarged longitudinal dose profiles in cone-beam CT and the need for modified dosimetry. Med. Phys 2005;32(4):1061-9.

Boone JM. The trouble with CTDI100. Med. Phys 2007;34: 1365-71.

Descargas

Publicado

2019-07-12

Número

Sección

Artículos científicos

Cómo citar

Medida del índice de dosis en TC de 320 filas de detectores. (2019). Revista De Física Médica, 20(1). https://revistadefisicamedica.es/index.php/rfm/article/view/292

Artículos similares

31-40 de 227

También puede Iniciar una búsqueda de similitud avanzada para este artículo.