Metodología para la validación de programas de cálculo de dosis en piel

Autores/as

  • Antonio Gañán Mora Servicio de Física Médica, Hospital Clínico San Carlos; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos.
  • Roberto Mariano Sánchez Casanueva Servicio de Física Médica, Hospital Clínico San Carlos; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos. Departamento de Radiología, Universidad Complutense de Madrid. https://orcid.org/0000-0003-3130-2362
  • José Miguel Fernández Soto Servicio de Física Médica, Hospital Clínico San Carlos; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos. Departamento de Radiología, Universidad Complutense de Madrid.

DOI:

https://doi.org/10.37004/sefm/2024.25.2.002

Palabras clave:

intervencionismo, protección del paciente, dosis en piel, programa de cálculo de dosis, validación

Resumen

Objetivo. Se presenta una metodología para facilitar la validación de programas de cálculo de dosis en piel en procedimientos intervencionistas.

Material y métodos. La metodología parte de unas situaciones de irradiación archivadas como informes estructurados de dosis DICOM (Radiation Dose Structured Reports, RDSRs) y los valores de referencia de dosis en piel en cada situación. Los usuarios deberán procesar los RDSRs en su programa de cálculo de dosis piel y comparar su resultado con los valores de referencia.

Los autores han realizado 27 irradiaciones empleando dos equipos de distintos fabricantes. Para cada irradiación se han variado parámetros que afectan a la dosis en piel y se ha medido con una cámara de ionización la dosis en piel recibida por un maniquí relleno de agua. Se ha aplicado la metodología para validar el programa SkinDose 2D.

Resultados. Las medidas experimentales tienen una incertidumbre del 13% (k = 2). La predicción del programa SkinDose 2D difiere de las medidas entre un -9% y +8%, estando dentro de las incertidumbres experimentales.

Conclusiones. Variando distintos parámetros que afectan a la estimación dosimétrica, esta metodología permite realizar una primera validación de modelos de dosis en piel, caracterizándolos antes de cualquier otra irradiación adicional del usuario.

Referencias

1. Balter S, Hopewell JW, Miller DL, Wagner LK, Zelefsky MJ. Fluoroscopically Guided Interventional Procedures: A Review of Radiation Effects on Patients’ Skin and Hair. Radiol 2010;254(2):326-41. https://doi.org/10.1148/radiol.2542082312

2. Jaschke W, Schmuth M, Trianni A, Bartral G. Radiation-Induced Skin Injuries to Patients: What the Interventional Radiologist Needs to Know. Cardiovasc Intervent Radiol 2017;(40):1131-40. https://doi.org/10.1007/s00270-017-1674-5

3. ICRP. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP publication 103. Annals of ICRP. 2007; 37(2-4).

4. Malchair F, Dabin J, Deleu M, Sans Merce M, Ciraj Bjelac O, Gallagher A, et al. Review of skin dose calculation software in interventional cardiology. Phys Med 2020;80:75-83. https://doi.org/10.1016/j.ejmp.2020.09.023

5. Khodadadegan Y, Zhang M, Pavlicek W, G. Paden R, Chong B, Huettl EA, et al. Validation and Initial Clinical Use of Automatic Peak Skin Dose Localization with Fluoroscopic and Interventional Procedures. Radiol 2013; 266(1): 246-55. https://doi.org/10.1148/radiol.12112295

6. Johnson PB, Borrego D, Balter S, Johnson K, Siragusa D, Bolch WE. Skin dose mapping for fluoroscopically guided interventions. Med Phys 2011;38(10):5490-9. https://doi.org/10.1118/1.3633935

7. Benmakhlouf H, Bouchard H, Fransson A, Andreo P. Backscatter factors and mass energy-absorption coefficient ratios for diagnostic radiology dosimetry. Phys Med Biol 2011; 56(22): 7179. https://doi.org/10.1088/0031-9155/56/22/012

8. ICRU. Patient dosimetry for x rays used in medical imaging. Journal of the ICRU. 2005;5(2).

9. IAEA. Dosimetry in Diagnostic Radiology: An International Code of Practice Vienna: International Atomic Energy Agency;2007.

10. Andersson J, Bednarek DR, Bolch W, Boltz T, Bosmans H, Gislason-Lee AJ, et al. Estimation of patient skin dose in fluoroscopy: summary of a joint report by AAPM TG357 and EFOMP. Med Phys 2021;48(7):671-96. https://doi.org/10.1002/mp.14910

11. DeLorenzo MC, Yang K, Liu B. Comprehensive evaluation of broad-beam transmission of patient supports from three fluoroscopy-guided interventional systems. Med Phys 2018;45(4):1425-32. https://doi.org/10.1002/mp.12803

12. Greffier J, Grussenmeyer-Mary N, Larbi A, Goupil J, Cayla G, Ledermann B, et al. Experimental evaluation of a radiation dose management system-integrated 3D skin dose map by comparison with XR-RV3 Gafchromic® films. Phys Med 2019;66:77-87. https://doi.org/10.1016/j.ejmp.2019.09.234

13. Farah J, Trianni A, Ciraj-Bjelac O, Clairand I, De Angelis C, Delle Canne S, et al. Characterization of XR-RV3 GafChromic® films in standard laboratory and in clinical conditions and means to evaluate uncertainties and reduce errors. Med Phys 2015;42: 4211-26. https://doi.org/10.1118/1.4922132

14. Rana VK, Rudin S, Bednarek DR. A tracking system to calculate patient skin dose in real-time during neurointerventional procedures using a biplane x-ray imaging system. Med Phys 2016;43(9):5131-44. https://doi.org/10.1118/1.4960368

15. Jérémie Dabin VBCBO, Deleu M, De Monte F, Feghali JA, Gallagher A, Knežević Ž, et al. Accuracy of skin dose mapping in interventional cardiology: Comparison of 10 software products following a common protocol. Phys Med 2021;82:279-94. https://doi.org/10.1016/j.ejmp.2021.02.016

16. International Electrotechnical Comission. Medical electrical equipment - Part 2-43: Particular requirements for the basic safety and essential performance of X-ray equipment for interventional procedures;2022.

17. Vañó E, Fernández Soto JM, Ten JI, Sánchez Casanueva R. Benefits and limitations for the use of radiation dose management systems in medical imaging. Practical experience in a university hospital. Br J Radiol 2022;95:1133. https://doi.org/ 0.1259/bjr.20211340

18. Lafarge T, Possolo A. The NIST Uncertainty Machine. NCSLI Measure Journal of Meas Sc 2017;10(3):20-7. https://doi.org/10.1080/19315775.2015.11721732

19. BIPM; IEC; IFCC; ILAC; ISO; IUPAC; IUPAP; OIML. Evaluation of measurement data - Guide to the expression of uncertainty in measurement;2008.

20. BIPM; IEC; IFCC; ILAC; ISO; IUPAC; IUPAP; OIML. Evaluation of measurement data - Supplement 1 to the "Guide to the expression of uncertainty in measurement" - Propagation of distributions using a Monte Carlo method;2008.

21. Krajinović M, Vujisić M, Olivera CB. Uncertainty associated with the use of software solutions utilizing DICOM RDSR for skin dose assessment in interventional radiology and cardiology. Rad Prot Dos 2021;196(3-4):129-35. https://doi.org/10.1093/rpd/ncab146

Descargas

Publicado

2024-11-04

Número

Sección

Artículos científicos

Cómo citar

Metodología para la validación de programas de cálculo de dosis en piel. (2024). Revista De Física Médica, 25(2), 25-34. https://doi.org/10.37004/sefm/2024.25.2.002

Artículos similares

51-60 de 239

También puede Iniciar una búsqueda de similitud avanzada para este artículo.