Herramientas para el manejo y la evaluación de la complejidad de los planes de radioterapia.
DOI:
https://doi.org/10.37004/sefm/2025.26.1.001Palabras clave:
Complejidad, Métricas de complejidad, Planes de tratamiento, IMRT, VMATResumen
Introducción: Para evaluar la calidad de los planes de tratamiento de radioterapia es conveniente analizar no solo la distribución de dosis calculada, sino también su complejidad. En este estudio se describen herramientas para calcular métricas de complejidad y se muestra su utilidad comparando planes optimizados con y sin control de complejidad.
Material y métodos: Se optimizaron planes con y sin control de complejidad usando la herramienta Aperture Shape Controller del sistema de planificación Eclipse y el control del número de Unidades de Monitor en dos casos clínicos. La comparación dosimétrica se realizó mediante análisis de planos axiales, perfiles de dosis e índices dosimétricos. La complejidad se cuantificó usando métricas calculadas con dos herramientas de desarrollo propio (script de Eclipse y PlanAnalyzer, programado en MATLAB).
Resultados: Al usar las herramientas de control de complejidad se obtuvieron planes con grados de complejidad mucho menores en los dos casos evaluados, pero manteniendo distribuciones dosimétricas muy similares y resultando todos clínicamente aceptables.
Conclusiones: El control y análisis de la complejidad son importantes en la evaluación de los planes de tratamiento. Las herramientas utilizadas para evaluar la complejidad se ponen a disposición de los socios de la Sociedad Española de Física Médica.
Referencias
1. World Health Organization, editor. Quality assurance in radiotherapy: a guide prepared following a workshop held at Schloss Reisensburg, Federal Republic of Germany, 3-7 December 1984, and organized jointly by Institute of Radiation Hygiene, Federal Health Office, Neuherberg, Federal Republic of Germany and World Health Organization, Geneva, Switzerland. Geneva : Albany, NY: World Health Organization ; WHO Publications Center USA; 1988. 52 p.
2. Lliso Valverde F, Vilches Pacheco M, Martínez Albaladejo M, Almendral Manzano P, Ambroa Rey E, Ferrer Gracia CL, et al. Guía para el control de calidad y seguridad en aceleradores lineales de uso clínico. Rev Física Médica. 2024;25(1):77-122. https://doi.org/10.37004/sefm/2024.25.1.007. DOI: https://doi.org/10.37004/sefm/2024.25.1.007
3. Smith K, Balter P, Duhon J, White GA, Vassy DL, Miller RA, et al. AAPM Medical Physics Practice Guideline 8.a.: Linear accelerator performance tests. J Appl Clin Med Phys. 2017;18(4):23-39. https://doi.org/10.1002/acm2.12080. DOI: https://doi.org/10.1002/acm2.12080
4. Krauss RF, Balik S, Cirino ET, Hadley A, Hariharan N, Holmes SM, et al. AAPM Medical Physics Practice Guideline 8.b: Linear accelerator performance tests. J Appl Clin Med Phys. 2023;24(11):e14160. https://doi.org/10.1002/acm2.14160. DOI: https://doi.org/10.1002/acm2.14160
5. Miften M, Olch A, Mihailidis D, Moran J, Pawlicki T, Molineu A, et al. Tolerance limits and methodologies for IMRT measurement‐based verification QA : Recommendations of AAPM Task Group No. 218 . Med Phys [Internet]. 2018;45(4). https://doi.org/10.1002/mp.12810. DOI: https://doi.org/10.1002/mp.12810
6. Patel I, editor. Physics aspects of quality control in radiotherapy. 2nd edition. York: Institute of Physics and Engineering in Medicine; 2018.
7. García Romero A, Hernández Masgrau V, Baeza Trujillo M, Teijeiro García A, Clemente Gutiérrez F, Morera Cano D. Resultados de la encuesta de la Sociedad Española de Física Médica sobre de control de calidad de sistemas de planificación de tratamientos en el ámbito de haces de fotones y electrones de radioterapia externa. Rev Física Médica. 2021;2(22):55-66. https://doi.org/10.37004/sefm/2021.22.2.006. DOI: https://doi.org/10.37004/sefm/2021.22.2.006
8. Otto K. Volumetric modulated arc therapy: IMRT in a single gantry arc. Med Phys. 2008;35(1):310-7. https://doi.org/10.1118/1.2818738. DOI: https://doi.org/10.1118/1.2818738
9. Kaplan LP, Placidi L, Bäck A, Canters R, Hussein M, Vaniqui A, et al. Plan quality assessment in clinical practice: Results of the 2020 ESTRO survey on plan complexity and robustness. Radiother Oncol. 2022;173:254-61. https://doi.org/10.1016/j.radonc.2022.06.005. DOI: https://doi.org/10.1016/j.radonc.2022.06.005
10. Hernandez V, Hansen CR, Widesott L, Bäck A, Canters R, Fusella M, et al. What is plan quality in radiotherapy? The importance of evaluating dose metrics, complexity, and robustness of treatment plans. Radiother Oncol. 2020;153:26-33. https://doi.org/10.1016/j.radonc.2020.09.038. DOI: https://doi.org/10.1016/j.radonc.2020.09.038
11. Schwarz M, Cattaneo GM, Marrazzo L. Geometrical and dosimetrical uncertainties in hypofractionated radiotherapy of the lung: A review. Phys Med. 2017;36:126-39. https://doi.org/10.1016/j.ejmp.2017.02.011. DOI: https://doi.org/10.1016/j.ejmp.2017.02.011
12. Liebl J, Paganetti H, Zhu M, Winey BA. The influence of patient positioning uncertainties in proton radiotherapy on proton range and dose distributions. Med Phys. 2014;41(9):091711. https://doi.org/10.1118/1.4892601. DOI: https://doi.org/10.1118/1.4892601
13. Lomax AJ. Intensity modulated proton therapy and its sensitivity to treatment uncertainties 1: the potential effects of calculational uncertainties. Phys Med Biol. 2008;53(4):1027-42. https://doi.org/10.1088/0031-9155/53/4/014. DOI: https://doi.org/10.1088/0031-9155/53/4/014
14. Lomax AJ. Intensity modulated proton therapy and its sensitivity to treatment uncertainties 2: the potential effects of inter-fraction and inter-field motions. Phys Med Biol. 2008;53(4):1043-56. https://doi.org/10.1088/0031-9155/53/4/015. DOI: https://doi.org/10.1088/0031-9155/53/4/015
15. Yock AD, Mohan R, Flampouri S, Bosch W, Taylor PA, Gladstone D, et al. Robustness Analysis for External Beam Radiation Therapy Treatment Plans: Describing Uncertainty Scenarios and Reporting Their Dosimetric Consequences. Pract Radiat Oncol. 2019;9(4):200-7. https://doi.org/10.1016/j.prro.2018.12.002. DOI: https://doi.org/10.1016/j.prro.2018.12.002
16. Park JM, Wu HG, Kim JH, Carlson JNK, Kim K. The effect of MLC speed and acceleration on the plan delivery accuracy of VMAT. Br J Radiol. 2015;88(1049):20140698. https://doi.org/10.1259/bjr.20140698. DOI: https://doi.org/10.1259/bjr.20140698
17. Kamperis E, Kodona C, Hatziioannou K, Giannouzakos V. Complexity in Radiation Therapy: It’s Complicated. Int J Radiat Oncol. 2020;106(1):182-4. https://doi.org/10.1016/j.ijrobp.2019.09.003. DOI: https://doi.org/10.1016/j.ijrobp.2019.09.003
18. Antoine M, Ralite F, Soustiel C, Marsac T, Sargos P, Cugny A, et al. Use of metrics to quantify IMRT and VMAT treatment plan complexity: A systematic review and perspectives. Phys Med. 2019;64:98-108. https://doi.org/10.1016/j.ejmp.2019.05.024. DOI: https://doi.org/10.1016/j.ejmp.2019.05.024
19. Chiavassa S, Bessieres I, Edouard M, Mathot M, Moignier A. Complexity metrics for IMRT 492 and VMAT plans: a review of current literature and applications. Br J Radiol. 2019;92(1102):20190270. https://doi.org/10.1259/bjr.20190270. DOI: https://doi.org/10.1259/bjr.20190270
20. Hubley E, Pierce G. The influence of plan modulation on the interplay effect in VMAT liver SBRT treatments. Phys Med. 2017;40:115-21. https://doi.org/10.1016/j.ejmp.2017.07.025. DOI: https://doi.org/10.1016/j.ejmp.2017.07.025
21. Hernandez V, Saez J, Pasler M, Jurado-Bruggeman D, Jornet N. Comparison of complexity metrics for multi-institutional evaluations of treatment plans in radiotherapy. Phys Imaging Radiat Oncol. 2018;5:37-43. https://doi.org/10.1016/j.phro.2018.02.002. DOI: https://doi.org/10.1016/j.phro.2018.02.002
22. Crowe SB, Kairn T, Kenny J, Knight RT, Hill B, Langton CM, et al. Treatment plan complexity metrics for predicting IMRT pre-treatment quality assurance results. Australas Phys Eng Sci Med. 2014;37(3):475-82. https://doi.org/10.1007/s13246-014-0274-9. DOI: https://doi.org/10.1007/s13246-014-0274-9
23. Vieillevigne L, Khamphan C, Saez J, Hernandez V. On the need for tuning the dosimetric leaf gap for stereotactic treatment plans in the Eclipse treatment planning system. J Appl Clin Med Phys. 2019;20(7):68-77. https://doi.org/10.1002/acm2.12656. DOI: https://doi.org/10.1002/acm2.12656
24. McNiven AL, Sharpe MB, Purdie TG. A new metric for assessing IMRT modulation complexity and plan deliverability. Med Phys. 2010;37(2):505-15. https://doi.org/10.1118/1.3276775. DOI: https://doi.org/10.1118/1.3276775
25. Park JM, Park SY, Kim H, Kim JH, Carlson J, Ye SJ. Modulation indices for volumetric modulated arc therapy. Phys Med Biol. 2014;59(23):7315-40. https://doi.org/10.1088/0031-9155/59/23/7315. DOI: https://doi.org/10.1088/0031-9155/59/23/7315
26. Du W, Cho SH, Zhang X, Hoffman KE, Kudchadker RJ. Quantification of beam complexity in intensity‐modulated radiation therapy treatment plans. Med Phys. 2014;41(2):021716. https://doi.org/10.1118/1.4861821. DOI: https://doi.org/10.1118/1.4861821
27. Younge KC, Matuszak MM, Moran JM, McShan DL, Fraass BA, Roberts DA. Penalization of aperture complexity in inversely planned volumetric modulated arc therapy. Med Phys. 2012;39(11):7160-70. https://doi.org/10.1118/1.4762566. DOI: https://doi.org/10.1118/1.4762566
28. Masi L, Doro R, Favuzza V, Cipressi S, Livi L. Impact of plan parameters on the dosimetric accuracy of volumetric modulated arc therapy. Med Phys. 2013;40(7):071718. https://doi.org/10.1118/1.4810969. DOI: https://doi.org/10.1118/1.4810969
29. Scaggion A, Fusella M, Agnello G, Bettinelli A, Pivato N, Roggio A, et al. Limiting treatment plan complexity by applying a novel commercial tool. J Appl Clin Med Phys. 2020;21(8):27-34. https://doi.org/10.1002/acm2.12908. DOI: https://doi.org/10.1002/acm2.12908
30. International Commission on Radiation Units and Measurements (ICRU). ICRU Report 83: Prescribing, Recording, and Reporting Photon-Beam Intensity-Modulated Radiation Therapy (IMRT). J ICRU. 2010;10(1):1-106. https://doi.org/10.1093/jicru/ndq001. DOI: https://doi.org/10.1093/jicru_ndq002
31. Feuvret L, Noël G, Mazeron JJ, Bey P. Conformity index: A review. Int J Radiat Oncol. 2006;64(2):333-42. https://doi.org/10.1016/j.ijrobp.2005.09.028. DOI: https://doi.org/10.1016/j.ijrobp.2005.09.028
32. Paddick I, Lippitz B. A simple dose gradient measurement tool to complement the conformity index. J Neurosurg. 2006;105(Supplement):194-201. https://doi.org/10.3171/sup.2006.105.7.194. DOI: https://doi.org/10.3171/sup.2006.105.7.194
33. UK SABR Consortium. Stereotactic Ablative Body Radiation Therapy (SABR): A Resource. [Internet]. England: UK SABR Consortium; 2019. Disponible en: https://www.sabr.org.uk
34. Matuszak MM, Larsen EW, Fraass BA. Reduction of IMRT beam complexity through the use of beam modulation penalties in the objective function. Med Phys. 2007;34(2):507- 20. https://doi.org/10.1118/1.2409749. DOI: https://doi.org/10.1118/1.2409749
35. Mans A, Schuring D, Arends M, Vugts L, Wolthaus JWH, Lotz H, et al. NCS Report 24: Code of practice for the quality assurance and control for volumetric modulated arc therapy [Internet]. 1.a ed. Delft: NCS; 2015 feb. Disponible en: https://radiationdosimetry.org/ncs/documents/code-of-practice-for-the-quality-assurance-and-control-for-vmat. https://doi.org/10.25030/ncs-024. DOI: https://doi.org/10.25030/ncs-24
36. García Romero A, Baeza Trujillo M, Teijeiro García A, Clemente Gutiérrez F, Morera Cano D, Hernández Masgrau V. Guía para el control de calidad y seguridad de los sistemas de planificación y planes de tratamiento de radioterapia externa. Rev Física Médica. 2024;25(1):123-82. https://doi.org/10.37004/sefm/2024.25.1.008. DOI: https://doi.org/10.37004/sefm/2024.25.1.008
37. Kairn T, Crowe SB, Kenny J, Knight RT, Trapp JV. Predicting the likelihood of QA failure using treatment plan accuracy metrics. J Phys Conf Ser. 2014;489:012051. https://doi.org/10.1088/1742-6596/489/1/012051. DOI: https://doi.org/10.1088/1742-6596/489/1/012051