Risk analysis associated with the use of the VMAT technique vs. 3DCRT in breast treatments with axillary and supraclavicular lymph nodes

Authors

  • Paz García de Acilu Laá Hospital Universitario HM Puerta del Sur, Móstoles (Madrid)
  • Juan García Ruíz-Zorrilla Hospital Universitario HM Puerta del Sur, Móstoles (Madrid)
  • Ángel Montero Luis Hospital Universitario HM Sanchinarro, Madrid
  • Raquel Ciérvide Jurio Hospital Universitario HM Sanchinarro, Madrid
  • Carmen Rubio Rodríguez Hospital Universitario HM Sanchinarro, Móstoles (Madrid). Hospital Universitario HM Puerta del Sur, Madrid
  • Pedro Fernández Letón Hospital Universitario HM Sanchinarro, Móstoles (Madrid). Hospital Universitario HM Puerta del Sur, Madrid

DOI:

https://doi.org/10.37004/sefm/2021.22.1.001

Keywords:

VMAT, 3DCRT, breast cancer, radio-induced tumours, cardiotoxicity

Abstract

The use of Volumetric Intensity Modulated ArcTherapy (VMAT) for breast cancer treatments has always been controversial. The tighter conformation of the high absorbed doses around the target that VMAT provides over conformed radiotherapy (3DCRT) entails an increase of the healthy volumes irradiated with low doses, and the consequences of this fact should be analysed. This study tries to assess the suitability of one or another technique for the treatment of breast cancer patients with PTV volumes involving axillary and supraclavicular lymph nodes but not   the internal mammary chain. For this purpose, treatment plans of 80 patients that have been treated at our Institution with both techniques were analysed. First of all, pure dosimetric criteria were taken into account, for instance keep the dose in the organs at risk under the established limits. On the other hand, an estimation of the increase in the probability of developing secondary solid radio-induced tumours, due to low dose irradiation of healthy tissues, was done. Heart and pulmonary toxicities were also discussed according to the state of the art.

References

Lee B, Lee S, Sung J, Yoon M. Radiotherapy-induced secondary cancer risk for breast cancer: 3D conformal therapy versus IMRT versus VMAT. J Radiol Prot. 2014;34(2):325–31.

Bogue J, Wan J, Lavey RS, Parsai EI. Dosimetric comparison of VMAT with integrated skin flash to 3D field-in-field tangents for left breast irradiation. J Appl Clin Med Phys. 2019;20(2):24–9.

Byrne M, Archibald-Heeren B, Hu Y, Fong A, Chong L, Teh A. Comparison of semiautomated tangential VMAT with 3DCRT for breast or chest wall and regional nodes. J Appl Clin Med Phys. 2018;19(5):684–93.

Pignol JP, Truong P, Rakovitch E, Sattler MG, Whelan TJ, Olivotto IA. Ten years results of the Canadian breast intensity modulated radiation therapy (IMRT) randomized controlled trial. Radiother Oncol. 2016 Dec 1;121(3):414–9.

Jensen KE, Soril LJJ, Stelfox HT, Clement FM, Lin Y, Marshall DA. Side Effects Associated with the Use of Intensity-Modulated Radiation Therapy in Breast Cancer Patients Undergoing Adjuvant Radiation Therapy: A Systematic Review and Meta-Analysis. J Med Imaging Radiat Sci [Internet]. 2017;48(4):402–13. Available from: https://doi.org/10.1016/j.jmir.2017.09.002

Marta GN, Hanna SA, Martella E, Silva JLF da. Complications from radiotherapy for breast cancer. Sao Paulo Med J. 2011;129(2):116–7.

Sloan L, Alcorn S. Acute and Late Skin Toxicity from Breast Radiation. In: Wright J., editor. Toxicities of Radiation Treatment for Breast Cancer. Springer, Cham; 2019. p. 5–22.

Willner J, Jost A, Baier K, Flentje M. A little to a lot or a lot to a little? An analysis of pneumonitis risk from dose-volume histogram parameters of the lung in patients with lung cancer treated with 3-D conformal radiotherapy. Strahlentherapie und Onkol. 2003;179(8):548–56.

Chao PJ, Lee HF, Lan JH, Guo SS, Ting HM, Huang YJ, et al. Propensity-score-matched evaluation of the incidence of radiation pneumonitis and secondary cancer risk for breast cancer patients treated with IMRT/VMAT. Sci Rep [Internet]. 2017;7(1):1–9. Available from: http://dx.doi.org/10.1038/s41598-017-14145-x

Liu H, Chen X, He Z, Li J. Evaluation of 3D-CRT, IMRT and VMAT radiotherapy plans for left breast cancer based on clinical dosimetric study. Comput Med Imaging Graph [Internet]. 2016;54:1–5. Available from: http://dx.doi.org/10.1016/j.compmedimag.2016.10.001

Allemani C, Sant M, Weir HK, Richardson LC, Baili P, Storm H, et al. Breast cancer survival in the US and Europe: a CONCORD high- resolution study. Int Jo. 2013;132(5):1170–81.

American Cancer Society. Breast Cancer Facts & Figures 2019-2020. Atlanta: American Cancer Society, Inc. 2019.

Andersen ER, Eilertsen G, Myklebust AM, Eriksen S. Women’s experience of acute skin toxicity following radiation therapy in breast cancer. J Multidiscip Healthc. 2018;11:139–48.

Shapiro CL, Recht. M. Side Effects o Adjuvant Tratment of Breast Cancer. N Engl J Med. 2001;344(26):1997–2008.

Brownlee Z, Garg R, Listo M, Zavitsanos P, Wazer DE, Huber KE. Late complications of radiation therapy for breast cancer: Evolution in techniques and risk over time. Gland Surg. 2018;7(4):371–8.

Schneider U, Zwahlen D, Ross D, Kaser-Hotz B. Estimation of radiation-induced cancer from three-dimensional dose distributions: Concept of organ equivalent dose. Int J Radiat Oncol Biol Phys. 2005;61(5):1510–5.

Abo-Madyan Y, Aziz MH, Aly MMOM, Schneider F, Sperk E, Clausen S, et al. Second cancer risk after 3D-CRT, IMRT and VMAT

for breast cancer. Radiother Oncol [Internet]. 2014;110(3):471–6. Available from: http://dx.doi.org/10.1016/j.radonc.2013.12.002

Zhang Q, Liu J, Ao ningjian, Yu H, peng Y, ou L, et al. Secondary cancer risk after radiation therapy for breast cancer with different radiotherapy techniques. 2020;

Preston DL, Ron E, Tokuoka S, Funamoto S, Nishi N, Soda M, et al. Solid Cancer Incidence in Atomic Bomb Survivors: 1958–1998. Radiat Res. 2007;168(1):1–64.

Schneider U, Sumila M, Robotka J. Site-specific dose-response relationships for cancer induction from the combined Japanese A-bomb and Hodgkin cohorts for doses relevant to radiotherapy. Theor Biol Med Model. 2011;8(1):1–21.

Schneider U. Mechanistic model of radiation-induced cancer after fractionated radiotherapy using the linear-quadratic formula. Med Phys. 2009;36(4):1138–43.

Schneider U, Stipper A, Besserer J. Dose-response relationship for lung cancer induction at radiotherapy dose. Med Phys. 2010;20(3):206–14.

Schneider U, Sumila M, Robotka J, Gruber G, Mack A, Besserer J. Dose-response relationship for breast cancer induction at radiotherapy dose. Radiat Oncol. 2011;6(1):1–7.

Van Den Bogaard VAB, Ta BDP, Van Der Schaaf A, Bouma AB, Middag AMH, Bantema-Joppe EJ, et al. Validation and modification of a prediction model for acute cardiac events in patients with breast cancer treated with radiotherapy based

on three-dimensional dose distributions to cardiac substructures. J Clin Oncol. 2017;35(11):1171–8.

Darby SC, Ewertz M, McGale P, Bennet AM, Blom-Goldman U, Brnønum D, et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med. 2013;368(11):987–98.

Cai F, Luis MAF, Lin X, Wang M, Cai L, Cen C, et al. Anthracycline-induced cardiotoxicity in the chemotherapy treatment of breast cancer: Preventive strategies and treatment. Mol Clin Oncol. 2019;11(1):15–23.

Nicolazzi MA, Carnicelli A, Fuorlo M, Scaldaferri A, Masetti R, Landolfi R, et al. Anthracycline and trastuzumab-induced cardiotoxicity in breast cancer. Eur Rev Med Pharmacol Sci. 2018;22(7):2175–85.

Kaboré EG, Guenancia C, Vaz-Luis I, Di Meglio A, Pistilli B, Coutant C, et al. Association of body mass index and cardiotoxicity related to anthracyclines and trastuzumab in early breast cancer: French CANTO cohort study. PLoS Med. 2019;16(12):1–12.

Guenancia C, Lefebvre A, Cardinale D, Yu AF, Ladoire S, Ghiringhelli F, et al. Obesity as a risk factor for anthracyclines and trastuzumab cardiotoxicity in breast cancer: A systematic review and meta-analysis. J Clin Oncol. 2016;34(26):3157–65.

Jacobse JN, Duane FK, Boekel NB, Schaapveld M, Hauptmann M, Hooning MJ, et al. Radiation Dose-Response for Risk of Myocardial Infarction in Breast Cancer Survivors. Int J Radiat Oncol Biol Phys [Internet]. 2019;103(3):595–604. Available from: https://doi.org/10.1016/j.ijrobp.2018.10.025

Taylor C, Duane FK, Dodwell D, Gray R, Wang Z, Wang Y, et al. Estimating the Risks of Breast cancer radiotherapy: Evidence from modern radiation doses to the lungs and Heart and From previous randomized trials. J Clin Oncol. 2017;35(15):1641–9.

Offersen B, Højris I, Overgaard M. Radiation-induced heart morbidity after adjuvant radiotherapy of early breast cancer - Is it still an issue? Radiother Oncol [Internet]. 2011;100(2):157–9. Available from: http://dx.doi.org/10.1016/j.radonc.2011.08.007

Correa CR, Litt HI, Hwang WT, Ferrari VA, Solin LJ, Harris EE. Coronary artery findings after left-sided compared with right-sided radiation treatment for early-stage breast cancer. J Clin Oncol. 2007;25(21):3031–7.

Evans SB, Panigrahi B, Northrup V, Patterson J, Baldwin DE, Higgins SA, et al. Analysis of coronary artery dosimetry in the 3-dimensional era: Implications for organ-at-risk segmentation and dose tolerances in left-sided tangential breast radiation. Pract Radiat Oncol [Internet]. 2013;3(2):e55–60. Available from: http://dx.doi.org/10.1016/j.prro.2012.06.007

Becker-Schiebe M, Stockhammer M, Hoffmann W, Wetzel F, Franz H. Does mean heart dose sufficiently reflect coronary artery exposure in left-sided breast cancer radiotherapy? Strahlentherapie und Onkol. 2016;192(9):624–31.

Plieskienè A, Burdulis D. Assessment Of The Dose To The Heart And The Left Anterior Descending Coronary Artery For The Left Breast Radiotherapy. Sveik Moksl. 2016;26(5):79–83.

Bielopolski D, Evron E, Moreh-Rahav O, Landes M, Stemmer SM, Salamon F. Paclitaxel-induced pneumonitis in patients with breast cancer: case series and review of the literature. J Chemother. 2017;29(2):113–7.

Taghian AG, Assaad SI, Niemierko A, Kuter I, Younger J, Schoenthaler R, et al. Risk of pneumonitis in breast cancer patients treated with radiation therapy and combination chemotherapy with paclitaxel. J Natl Cancer Inst. 2001;93(23):1806–11.

Vasiljevic D, Arnold C, Neuman D, Fink K, Popovscaia M, Kvitsaridze I, et al. Occurrence of pneumonitis following radiotherapy of breast cancer – A prospective study. Strahlentherapie und Onkol. 2018;194(6):520–32.

Lind PA, Wennberg B, Gagliardi G, Rosfors S, Blom-Goldman U, Lideståhl A, et al. ROC curves and evaluation of radiation-induced pulmonary toxicity in breast cancer. Int J Radiat Oncol Biol Phys. 2006;64(3):765–70.

Goldman UB, Wennberg B, Svane G, Bylund H, Lind P. Reduction of radiation pneumonitis by V20-constraints in breast cancer. Radiat Oncol. 2010;5(1):1–6.

Haciislamoglu E, Cinar Y, Gurcan F, Canyilmaz E, Gungor G, Yoney A. Secondary cancer risk after whole-breast radiation therapy: Field-in-field versus intensity modulated radiation therapy versus volumetric modulated arc therapy. Br J Radiol. 2019;92(1102).

Downloads

Published

2021-01-26

Issue

Section

Scientific articles

How to Cite

Risk analysis associated with the use of the VMAT technique vs. 3DCRT in breast treatments with axillary and supraclavicular lymph nodes. (2021). Revista De Física Médica, 22(1), 11-25. https://doi.org/10.37004/sefm/2021.22.1.001

Similar Articles

1-10 of 228

You may also start an advanced similarity search for this article.