Report of the SEFM Task Group on Surface Guided Radiotherapy (SGRT): Recommended procedures for the acceptance testing and commissioning
DOI:
https://doi.org/10.37004/sefm/2022.23.1.003Keywords:
SGRT, quality control, commissioning, latenciesAbstract
The conclusions of the Working Group on Surface Guided Radiotherapy, promoted by the Spanish Society of Medical Physics, are presented. The objectives include procedures for the acceptance testing and commissioning of positioning, monitoring, and tracking devices based on the recognition of the patient's surface. Guidelines for the acquisition and installation of this equipment, as well as recommendations for a reliable clinical use are also established.
The field of study has been delimited to commercial programs and devices, analyzing the advantages and limitations of these techniques for different applications in Radiotherapy. Based on the available bibliography, and on the experience of national centers with the implementation of the SGRT, tolerances and periodicities have been established for the quality control tests proposed herein. Additionally, guidelines have been developed for the implementation of special techniques that pose these devices to their limit of accuracy.
Finally, three annexes have been included with practical steps for the evaluation and analysis of latencies, the construction of quality control phantoms for their measurement, as well as the clinical implications regarding the presence of latencies to the treatment of lesions under respiratory movement conditions.
References
Willoughby T, Lehmann J, Bencomo JA, et al. Quality assurance for nonradiographic radiotherapy localization and positioning systems: Report of Task Group 147. Med Phys.2012;39(4):1728-47. doi:10.1118/1.3681967
Lizuain MC, Capuz AB, Delgado JM, Crispin V, Garcia S, Juan XJ, et al. Recomendaciones para el control de calidad de equipos y técnicas de radioterapia guiada por la imagen (IGRT). ADI Servicios Editoriales; 2013.
Freislederer P, Kügele M, Öllers M, et al. Recent advances in Surface Guided Radiation Therapy. Radiat Oncol. 2020;15(1):187. doi:10.1186/s13014-020-01629-w
Batista V, Meyer J, Kügele M, Al-Hallaq H. Clinical paradigms and challenges in surface guided radiation therapy: Where do we go from here? Radiother Oncol. 2020;153:34-42. doi:10.1016/j.radonc.2020.09.041
Weiss E, Vorwerk H, Richter S, Hess CF. Interfractional and intrafractional accuracy during radiotherapy of gynecologic carcinomas: A comprehensive evaluation using the ExacTrac system. Int J Radiat Oncol Biol Phys. 2003;56(1):69-79. doi:10.1016/S0360-3016(02)04616-3
Yin F-F, Ryu S, Ajlouni M, et al. A technique of intensity-modulated radiosurgery (IMRS) for spinal tumors. Med Phys. 2002;29(12):2815-22. doi:10.1118/1.1521722
Wiersma RD, McCabe BP, Belcher AH, Jensen PJ, Smith B, Aydogan B. Technical Note: High temporal resolution characterization of gating response time. Med Phys. 2016;43(6):2802-6. doi:10.1118/1.4948500
Ehler ED, Nelms BE, Tomé WA. On the dose to a moving target while employing different IMRT delivery mechanisms. Radiother Oncol. 2007;83(1):49-56. doi:10.1016/j.radonc.2007.02.007
Li HS, Chetty IJ, Solberg TD. Quantifying the interplay effect in prostate IMRT delivery using a convolution-based method. Med Phys. 2008;35(5):1703-10. doi:10.1118/1.2897972
Coolens C, Evans PM, Seco J, et al. The susceptibility of IMRT dose distributions to intrafraction organ motion: An investigation into smoothing filters derived from four dimensional computed tomography data. Med Phys. 2006;33(8):2809-18. doi:10.1118/1.2219329
ICRU Report 83 - Prescribing, Recording, and Reporting Photon-Beam Intensity-Modulated Radiation Therapy (IMRT). J ICRU. 2010;10(1):1-111. doi:10.1093/jicru/ndq025
Manger RP, Paxton AB, Pawlicki T, et al. Failure mode and effects analysis and fault tree analysis of surface image guided cranial radiosurgery. Med Phys. 2015;42(5):2449-61. doi:10.1118/1.4918319
Gensheimer MF, Zeng J, Carlson J, et al. Influence of planning time and treatment complexity on radiation therapy errors. Pract Radiat Oncol. 2016;6(3):187-93. doi:10.1016/j.prro.2015.10.017
Stieler F, Wenz F, Shi M, Lohr F. A novel surface imaging system for patient positioning and surveillance during radiotherapy. Strahlentherapie und Onkol. 2013;189(11):938-44. doi:10.1007/s00066-013-0441-z
Murphy MJ, Balter J, Balter S, et al. The management of imaging dose during image-guided radiotherapy: Report of the AAPM Task Group 75. Med Phys. 2007;34(10):4041-63. doi:10.1118/1.2775667
Rwigema JCM, Lamiman K, Reznik RS, Lee NJH, Olch A, Wong KK. Palliative radiation therapy for superior vena cava syndrome in metastatic Wilms tumor using 10XFFF and 3D surface imaging to avoid anesthesia in a pediatric patient — a teaching case. Adv Radiat Oncol. 2017;2(1):101-4. doi:10.1016/j.adro.2016.12.007
Wong KK, Ragab O, Tran HN, et al. Acute toxicity of craniospinal irradiation with volumetric-modulated arc therapy in children with solid tumors. Pediatric Blood Cancer. 2018;65(7). doi:10.1002/pbc.27050
Wiant DB, Wentworth S, Maurer JM, Vanderstraeten CL, Terrell JA, Sintay BJ. Surface imaging-based analysis of intrafraction motion for breast radiotherapy patients. J Appl Clin Med Phys. 2014;15(6):147-59. doi:10.1120/jacmp.v15i6.4957
Sueyoshi M, Olch AJ, Liu KX, Chlebik A, Clark D, Wong KK. Eliminating Daily Shifts, Tattoos, and Skin Marks: Streamlining Isocenter Localization With Treatment Plan Embedded Couch Values for External Beam Radiation Therapy. Pract Radiat Oncol. 2019;9(1):e110-7. doi:10.1016/j.prro.2018.08.011
Crook JM, Raymond Y, Salhani D, Yang H, Esche B. Prostate motion during standard radiotherapy as assessed by fiducial markers. Radiother Oncol. 1995;37(1):35-42. doi:10.1016/0167-8140(95)01613-L
Ramsey CR, Scaperoth D, Seibert R, Chase D, Byrne T, Mahan S. Image-guided helical tomotherapy for localized prostate cancer: technique and initial clinical observations. J Appl Clin Med Phys. 2007;8(3):2320. doi:10.1120/jacmp.v8i3.2320
Lu XQ, Shanmugham LN, Mahadevan A, et al. Organ Deformation and Dose Coverage in Robotic Respiratory-Tracking Radiotherapy. Int J Radiat Oncol Biol Phys. 2008;71(1):281-9. doi:10.1016/j.ijrobp.2007.12.042
Brock KK, McShan DL, Ten Haken RK, Hollister SJ, Dawson LA, Balter JM. Inclusion of organ deformation in dose calculations. Med Phys. 2003;30(3):290-5. doi:10.1118/1.1539039
Von Siebenthal M, Sźkely G, Lomax AJ, Cattin PC. Systematic errors in respiratory gating due to intrafraction deformations of the liver. Med Phys. 2007;34(9):3620-9. doi:10.1118/1.2767053
Benedict SH, Yenice KM, Followill D, et al. Stereotactic body radiation therapy: The report of AAPM Task Group 101. Med Phys. 2010;37(8):4078-101. doi:10.1118/1.3438081
Keall P, Mageras G. Managing respiratory motion in radiation therapy. AAPM 46th Annu Meet (TG 76 Task Group). Published online 2004:1-16. http://www.aapm.org/meetings/04AM/pdf/14-2269-79352.pdf
Hoisak JDP, Brent Paxton AB, Waghorn BJ, Pawlicki T. Surface Guided Radiation Therapy. In: Taylor & Francis Ltd, ed. Definitions. Taylor & Francis Ltd; 2020:492. doi:10.32388/gf38iv
Stanley DN, McConnell KA, Kirby N, Gutiérrez AN, Papanikolaou N, Rasmussen K. Comparison of initial patient setup accuracy between surface imaging and three point localization: A retrospective analysis. J Appl Clin Med Phys. 2017;18(6):58-61. doi:10.1002/acm2.12183
Alderliesten T, Sonke JJ, Betgen A, Honnef J, Van Vliet-Vroegindeweij C, Remeijer P. Accuracy evaluation of a 3-dimensional surface imaging system for guidance in deep-inspiration breath-hold radiation therapy. Int J Radiat Oncol Biol Phys. 2013;85(2):536-42. doi:10.1016/j.ijrobp.2012.04.004
Cravo Sá A, Fermento A, Neves D, et al. Radiotherapy setup displacements in breast cancer patients: 3D surface imaging experience. Reports Pract Oncol Radiother. 2018;23(1):61-7. doi:10.1016/j.rpor.2017.12.007
Gierga DP, Turcotte JC, Tong LW, Chen YLE, DeLaney TF. Analysis of setup uncertainties for extremity sarcoma patients using surface imaging. Pract Radiat Oncol. 2014;4(4):261-6. doi:10.1016/j.prro.2013.09.001
Kügele M, Mannerberg A, Nørring Bekke S, et al. Surface guided radiotherapy (SGRT) improves breast cancer patient setup accuracy. J Appl Clin Med Phys. 2019;20(9):61-8. doi:10.1002/acm2.12700
Schöffel PJ, Harms W, Sroka-Perez G, Schlegel W, Karger CP. Accuracy of a commercial optical 3D surface imaging system for realignment of patients for radiotherapy of the thorax. Phys Med Biol. 2007;52(13):3949-63. doi:10.1088/0031-9155/52/13/019
Lee SK, Huang S, Zhang L, et al. Accuracy of surface-guided patient setup for conventional radiotherapy of brain and nasopharynx cancer. J Appl Clin Med Phys. 2021;22(5):48-57. doi:10.1002/acm2.13241
Zhao B, Maquilan G, Jiang S, Schwartz DL. Minimal mask immobilization with optical surface guidance for head and neck radiotherapy. J Appl Clin Med Phys. 2018;19(1):17-24. doi:10.1002/acm2.12211
Wiant D, Squire S, Liu H, Maurer J, Lane Hayes T, Sintay B. A prospective evaluation of open face masks for head and neck radiation therapy. Pract Radiat Oncol. 2016;6(6):e259-67. doi:10.1016/j.prro.2016.02.003
Rigley J, Robertson P, Scattergood L. Radiotherapy without tattoos: Could this work? Radiography. 2020;26(4):288-93. doi:10.1016/j.radi.2020.02.008
Jimenez RB, Batin E, Giantsoudi D, et al. Tattoo free setup for partial breast irradiation: A feasibility study. J Appl Clin Med Phys. 2019;20(4):45-50. doi:10.1002/acm2.12557
Sixel KE, Aznar MC, Ung YC. Deep inspiration breath hold to reduce irradiated heart volume in breast cancer patients. Int J Radiat Oncol Biol Phys. 2001;49(1):199-204. doi:10.1016/S0360-3016(00)01455-3
Zagar TM, Kaidar-Person O, Tang X, et al. Utility of Deep Inspiration Breath Hold for Left-Sided Breast Radiation Therapy in Preventing Early Cardiac Perfusion Defects: A Prospective Study. In: International Journal of Radiation Oncology Biology Physics. Vol 97;2017:903-9. doi:10.1016/j.ijrobp.2016.12.017
Laaksomaa M, Sarudis S, Rossi M, et al. AlignRT® and CatalystTM in whole-breast radiotherapy with DIBH: Is IGRT still needed? J Appl Clin Med Phys. 2019;20(3):97-104. doi:10.1002/acm2.12553
Proyecto MARR - Sociedad Española de Física Médica. Accessed October 5, 2021. https://sefm.es/aplicaciones/proyecto-marr/
Al-Hallaq H, Batista V, Kügele M, Ford E, Viscariello N, Meyer J. The role of surface-guided radiation therapy for improving patient safety. Radiother Oncol. 2021;163:229-36. doi:10.1016/j.radonc.2021.08.008
Wang LT, Solberg TD, Medin PM, Boone R. Infrared patient positioning for stereotactic radiosurgery of extracranial tumors. Comput Biol Med. 2001;31(2):101-11. doi:10.1016/S0010-4825(00)00026-3
Takakura T, Mizowaki T, Nakata M, et al. The geometric accuracy of frameless stereotactic radiosurgery using a 6D robotic couch system. Phys Med Biol. 2010;55(1):1-10. doi:10.1088/0031-9155/55/1/001
Verbakel, Wilko F.A.R., Lagerwaard FJ, Verduin AJE, Heukelom S, Slotman BJ, Cuijpers JP. The accuracy of frameless stereotactic intracranial radiosurgery. Radiother Oncol. 2010;97(3):390-4. doi:10.1016/j.radonc.2010.06.012
Kim J, Jin JY, Walls N, et al. Image-guided localization accuracy of stereoscopic planar and volumetric imaging methods for stereotactic radiation surgery and stereotactic body radiation therapy: A phantom study. Int J Radiat Oncol Biol Phys. 2011;79(5):1588-96. doi:10.1016/j.ijrobp.2010.05.052
Rusinkiewicz S, Levoy M. Efficient variants of the ICP algorithm. Proc Int Conf 3-D Digit Imaging Model 3DIM. Published online 2001:145-52. doi:10.1109/IM.2001.924423
Placht S, Stancanello J, Schaller C, Balda M, Angelopoulou E. Fast time-of-flight camera based surface registration for radiotherapy patient positioning. Med Phys. 2011;39(1):4-17. doi:10.1118/1.3664006
Erdi YE, Rosenzweig K, Erdi AK, et al. Radiotherapy treatment planning for patients with non-small cell lung cancer using positron emission tomography (PET). Radiother Oncol. 2002;62(1):51-60. doi:10.1016/S0167-8140(01)00470-4
Jarvis LA, Hachadorian RL, Jermyn M, et al. Initial Clinical Experience of Cherenkov Imaging in External Beam Radiation Therapy Identifies Opportunities to Improve Treatment Delivery. Int J Radiat Oncol Biol Phys. 2021;109(5):1627-37. doi:10.1016/j.ijrobp.2020.11.013
Willoughby TR, Forbes AR, Buchholz D, et al. Evaluation of an infrared camera and X-ray system using implanted fiducials in patients with lung tumors for gated radiation therapy. Int J Radiat Oncol. 2006;66(2):568-75. doi:10.1016/J.IJROBP.2006.05.029
Shi C, Tang X, Chan M. Evaluation of the new respiratory gating system. Precis Radiat Oncol. 2017;1(4):127-33. doi:10.1002/pro6.34
Zeng C, Xiong W, Li X, et al. Intrafraction tumor motion during deep inspiration breath hold pancreatic cancer treatment. J Appl Clin Med Phys. 2019;20(5):37-43. doi:10.1002/acm2.12577
Klein EE, Hanley J, Bayouth J, et al. Task group 142 report: Quality assurance of medical accelerators. Med Phys. 2009;36(9):4197-212. doi:10.1118/1.3190392
Yin F-F, Wong J, Balter J, et al. The role of in-room kV X-Ray imaging for patient setup and target localization Report of AAPM Task Group 104. Data Manag. 2009;(104).
Jin JY, Yin FF, Tenn SE, Medin PM, Solberg TD. Use of the BrainLAB ExacTrac X-Ray 6D System in Image-Guided Radiotherapy. Med Dosim. 2008;33(2):124-34. doi:10.1016/j.meddos.2008.02.005
Dieterich S, Cavedon C, Chuang CF, et al. Report of AAPM TG 135: Quality assurance for robotic radiosurgery. Med Phys. 2011;38(6):2914-36. doi:10.1118/1.3579139
Schnarr E, Beneke M, Casey D, et al. Feasibility of real-time motion management with helical tomotherapy. Med Phys. 2018;45(4):1329-37. doi:10.1002/mp.12791
Brahme A, Nyman P, Skatt B. 4D laser camera for accurate patient positioning, collision avoidance, image fusion and adaptive approaches during diagnostic and therapeutic procedures. Med Phys. 2008;35(5):1670-81. doi:10.1118/1.2889720
Pallotta S, Marrazzo L, Ceroti M, Silli P, Bucciolini M. A phantom evaluation of Sentinel, a commercial laser/camera surface imaging system for patient setup verification in radiotherapy. Med Phys. 2012;39(2):706-12. doi:10.1118/1.3675973
Meyer J, Smith W, Geneser S, et al. Characterizing a deformable registration algorithm for surface-guided breast radiotherapy. Med Phys. 2020;47(2):352-62. doi:10.1002/MP.13921
Pallotta S, Kugele M, Redapi L, Ceberg S. Validation of a commercial deformable image registration for surface-guided radiotherapy using an ad hoc-developed deformable phantom. Med Phys. 2020;47(12):6310-18. doi:10.1002/MP.14527
Siebert JP, Marshall SJ. Human body 3D imaging by speckle texture projection photogrammetry. Sens Rev. 2000;20(3):218-26. doi:10.1108/02602280010372368
Nguyen D, Farah J, Barbet N, Khodri M. Commissioning and performance testing of the first prototype of AlignRT InBoreTM a HalcyonTM and EthosTM-dedicated surface guided radiation therapy platform. Phys Medica. 2020;80:159-66. doi:10.1016/j.ejmp.2020.10.024
Bert C, Metheany KG, Doppke KP, Taghian AG, Powell SN, Chen GTY. Clinical experience with a 3D surface patient setup system for alignment of partial-breast irradiation patients. Int J Radiat Oncol Biol Phys. 2006;64(4):1265-74. doi:10.1016/j.ijrobp.2005.11.008
Krell G, Saeid Nezhad N, Walke M, Al-Hamadi A, Gademann G. Assessment of Iterative Closest Point Registration Accuracy for Different Phantom Surfaces Captured by an Optical 3D Sensor in Radiotherapy. Comput Math Methods Med. 2017;2017. doi:10.1155/2017/2938504
Hoisak JDP, Pawlicki T. The Role of Optical Surface Imaging Systems in Radiation Therapy. Semin Radiat Oncol. 2018;28(3):185-93. doi:10.1016/j.semradonc.2018.02.003
Fischler MA, Bolles RC. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Graph Image Process. 1981;24(6):381-95. doi:10.1145/358669.358692
Park J, Zhou QY, Koltun V. Colored Point Cloud Registration Revisited. Proc IEEE Int Conf Comput Vis. 2017;2017-Octob:143-52. doi:10.1109/ICCV.2017.25
Joung JH, An KH, Kang JW, Chung MJ, Yu W. 3D environment reconstruction using modified color ICP algorithm by fusion of a camera and a 3D laser range finder. 2009 IEEE/RSJ Int Conf Intell Robot Syst IROS 2009. Published online 2009:3082-8. doi:10.1109/IROS.2009.5354500
Korn M, Holzkothen M, Pauli J. Color supported generalized-ICP - IEEE Conference Publication. In: 2014 International Conference on Computer Vision Theory and Applications (VISAPP). IEEE; 2014. doi:978-9-8975-8133-5
Schell MC, Bova FJ, Larson D a, et al. Stereotactic Radiosurgery Report of Task Group 42 Radiation Therapy Committee for the American Association of Physicists in Medicine (AAPM). Med Phys. 1995;(5):50.
Faught AM, Trager M, Yin FF, Kirkpatrick J, Adamson J. Re-examining TG-142 recommendations in light of modern techniques for linear accelerator based radiosurgery. Med Phys. 2016;43(10):5437-41. doi:10.1118/1.4962471
Pinza Molina C, Lliso Valverde F. Control de calidad en aceleradores de electrones para uso médico. In: Aula Documental de Investigación, ed. Sociedad Española de Física Médica; 2007:451.
BOE-A-1998-20644. https://www.boe.es/eli/es/rd/1998/07/17/1566
European Council Directive 2013/59/Euratom on basic safety standards for protection against the dangers arising from exposure to ionising radiation and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom. Published online 2014:57: 1–73.
Thomadsen BR, Heaton HT, Jani SK, et al. Off-label use of medical products in radiation therapy: Summary of the Report of AAPM Task Group No. 121. Med Phys. 2010;37(5):2300-11. doi:10.1118/1.3392286
Phillips MH, Singer K, Miller E, Stelzer K. Commissioning an image-guided localization system for radiotherapy. Int J Radiat Oncol Biol Phys. 2000;48(1):267-76. doi:10.1016/S0360-3016(00)00581-2
Wiersma RD, Tomarken SL, Grelewicz Z, Belcher AH, Kang H. Spatial and temporal performance of 3D optical surface imaging for real-time head position tracking. Med Phys. 2013;40(11). doi:10.1118/1.4823757
Paxton AB, Manger RP, Pawlicki T, Kim GY. Evaluation of a surface imaging system’s isocenter calibration methods. J Appl Clin Med Phys. 2017;18(2):85-91. doi:10.1002/acm2.12054
Russell C, Mack H, Paul S, Senthi S. OC-0190: Surface guided radiation therapy for breast cancer improves accuracy without the need for skin marks. Radiother Oncol. 2018;127:S102. doi:10.1016/s0167-8140(18)30500-0
Lujan AE, Larsen EW, Balter JM, Ten Haken RK. A method for incorporating organ motion due to breathing into 3D dose calculations. Med Phys. 1999;26(5):715-20. doi:10.1118/1.598577
Roland T, Mavroidis P, Shi C, Papanikolaou N. Incorporating system latency associated with real-time target tracking radiotherapy in the dose prediction step. Phys Med Biol. 2010;55(9):2651-68. doi:10.1088/0031-9155/55/9/015
Bertholet J, Knopf A, Eiben B, et al. Real-time intrafraction motion monitoring in external beam radiotherapy. Phys Med Biol. 2019;64(15):15TR01. doi:10.1088/1361-6560/AB2BA8
Cui G, Housley DJ, Chen F, Mehta VK, Shepard DM. Delivery efficiency of an Elekta linac under gated operation. J Appl Clin Med Phys. 2014;15(5):2-11. doi:10.1120/jacmp.v15i5.4713
Barfield G, Burton EW, Stoddart J, Metwaly M, Cawley MG. Quality assurance of gating response times for surface guided motion management treatment delivery using an electronic portal imaging detector. Phys Med Biol. 2019;64(12). doi:10.1088/1361-6560/ab205a
Gevaert T, Verellen D, Tournel K, et al. Overview of positioning techniques using Image Guided Radiotherapy. Phys Medica. 2011;27:S10. doi:10.1016/j.ejmp.2011.06.023
Bissonnette JP, Balter PA, Dong L, et al. Quality assurance for image-guided radiation therapy utilizing CT-based technologies: A report of the AAPM TG-179. Med Phys. 2012;39(4):1946-63. doi:10.1118/1.3690466
Laaksomaa M, Moser T, Kritz J, Pynnönen K, Rossi M. Comparison of three differently shaped ROIs in free breathing breast radiotherapy setup using surface guidance with AlignRT®. Reports Pract Oncol Radiother. 2021;26(4):545-52. doi:10.5603/rpor.a2021.0062
Landberg T, Chavaudra J, Dobbs J, et al. ICRU Report 62, Prescribing, Recording and Reporting Photon Beam Therapy. International Commission on Radiation Units and Measurements 1999;os32(1):NP-NP. doi:10.1093/jicru/os32.1.report62
Barbés B, Azcona JD, Prieto E, de Foronda JM, García M, Burguete J. Development and clinical evaluation of a simple optical method to detect and measure patient external motion. J Appl Clin Med Phys. 2015;16(5):306-21. doi:10.1120/jacmp.v16i5.5524
Tachibana H, Kitamura N, Ito Y, et al. Management of the baseline shift using a new and simple method for respiratory-gated radiation therapy: Detectability and effectiveness of a flexible monitoring system. Med Phys. 2011;38(7):3971-80. doi:10.1118/1.3598434
Hattel SH, Andersen PA, Wahlstedt IH, Damkjær S, Saini A, Thomsen JB. Evaluation of setup and intrafraction motion for surface guided whole-breast cancer radiotherapy. J Appl Clin Med Phys. 2019;20(6):39-44. doi:10.1002/acm2.12599
Xiao A, Crosby J, Malin M, et al. Single-institution report of setup margins of voluntary deep-inspiration breathhold (DIBH) whole breast radiotherapy implemented with real-time surface imaging. J Appl Clin Med Phys. 2018;19(4):205-13. doi:10.1002/acm2.12368
Li G, Ballangrud Å, Kuo LC, et al. Motion monitoring for cranial frameless stereotactic radiosurgery using video-based three-dimensional optical surface imaging. Med Phys. 2011;38(7):3981-94. doi:10.1118/1.3596526
Cerviño LI, Detorie N, Taylor M, et al. Initial clinical experience with a frameless and maskless stereotactic radiosurgery treatment. Pract Radiat Oncol. 2012;2(1):54-62. doi:10.1016/j.prro.2011.04.005
Sánchez Rubio P, Rodríguez Romero R, Pinto Monedero M Martínez Ortega J. Experiencia inicial en el uso de SGRT junto con IGRT para posicionamiento y control intrafracción en tratamientos de Radiocirugía Estereotáxica (SRS). 7o Congreso Conjunto SEFM-SEPR. On Line. In: 2021. Accessed June 24, 2021. https://plataforma.congresosefm-sepr.es/event/4/ contributions/2201/
Pham NL, Reddy PV, Murphy JD, et al. Frameless, Real Time, Surface Imaging Guided Radiosurgery: Clinical Outcomes for Brain Metastases. Int J Radiat Oncol. 2015;93(3):E105. doi:10.1016/j.ijrobp.2015.07.815
Pan H, Cerviño LI, Pawlicki T, et al. Frameless, real-time, surface imaging-guided radiosurgery: Clinical outcomes for brain metastases. Neurosurgery. 2012;71(4):844-51. doi:10.1227/NEU.0b013e3182647ad5
Soufi M, Arimura H. Surface-imaging-based patient positioning in radiation therapy. In: Image-Based Computer-Assisted Radiation Therapy. Springer Singapore; 2017:237-70. doi:10.1007/978-981-10-2945-5_10
Zhao X, Lau SKM, Zakeri K, et al. Single Isocenter Frameless Volumetric Modulated Arc Radiosurgery for Multiple Intracranial Metastases. Int J Radiat Oncol. 2015;93(3):E92-3. doi:10.1016/j.ijrobp.2015.07.782
Pinto Monedero M, Rodríguez Romero R, Sánchez Rubio P, Martínez Ortega J et al. 7o Congreso Conjunto SEFM-SEPR. On Line (27 de mayo de 2021 - 4 de junio de 2021): Protocolo de posicionamiento y control de movimiento intra-fracción mediante un sistema combinado de IGRT y SGRT en tratamientos de radiocirugía estereotáxica · Congresos S. Published 2021. Accessed June 24, 2021. https://plataforma.congresosefmsepr.es/event/4/contributions/2214/
Rodríguez Romero R, Pinto Monedero M, Sánchez Rubio P, et al. Control de calidad de un sistema de guiado por superficie para tratamientos estereotáxicos. 7o Congreso Conjunto SEFM- SEPR. On Line. In: ; 2021. Accessed June 24, 2021. https://plataforma.congresosefmsepr.es/event/4/contributions/2203/
Du W, Gao S, Jiang W, Kudchadker RJ. Independent evaluation of the effectiveness of IsoCal in improving image center accuracy on Varian TrueBeam and Clinac machines. J Appl Clin Med Phys. 2018;19(5):483-90. doi:10.1002/acm2.12402
Hamming VC, Visser C, Batin E, et al. Evaluation of a 3D surface imaging system for deep inspiration breath-hold patient positioning and intra-fraction monitoring. Radiat Oncol. 2019;14(1). doi:10.1186/s13014-019-1329-6
Carl G, Reitz D, Schönecker S, et al. Optical surface scanning for patient positioning in radiation therapy: A prospective analysis of 1902 fractions. Technol Cancer Res Treat. 2018;17:153303381880600. doi:10.1177/1533033818806002
Haji G, Nabizade U, Kazimov K, Guliyeva N, Isayev I. Liver dose reduction by deep inspiration breath hold technique in right-sided breast irradiation. Radiat Oncol J. 2019;37(4):254-8. doi:10.3857/roj.2019.00206
Fernández Letón P, Baños Capilla C, Gilabert JB, et al. Recomendaciones de la Sociedad Española de Física Médica (SEFM) sobre implementación y uso clínico de radioterapia estereotáxica extracraneal (SBRT). Rev Fis Med 2017;18(2):77-142.
Bissonnette JP, Balter PA, Dong L, et al. Quality assurance for image-guided radiation therapy utilizing CT-based technologies: A report of the AAPM TG-179. Med Phys. Published online 2012. doi:10.1118/1.3690466
Cerviño LI, Gupta S, Rose MA, Yashar C, Jiang SB. Using surface imaging and visual coaching to improve the reproducibility and stability of deep-inspiration breath hold for left-breast-cancer radiotherapy. Phys Med Biol. 2009;54(22):6853-65. doi:10.1088/0031-9155/54/22/007
Wiant D, Wentworth S, Liu H, Sintay B. How important is a reproducible breath hold for deep inspiration breath hold breast radiation therapy? Int J Radiat Oncol Biol Phys. 2015;93(4):901-7. doi:10.1016/j.ijrobp.2015.06.010
Genesis Care. Deep Inspiration Breath Hold. Definitions. Published online 2020. doi:10.32388/n5htsi
Zucca Aparicio D, Pérez Moreno JM, Fernández Letón P, García Ruiz-Zorrilla J, Miñambres Moro Á. Programa de garantía de calidad de un sistema de irradiación con control respiratorio basado en marcadores fiduciales externos e internos. Rev Fis Med 2011;12(3):169-86.
Batin E, Depauw N, MacDonald S, Lu HM. Can surface imaging improve the patient setup for proton postmastectomy chest wall irradiation? Pract Radiat Oncol. 2016;6(6):e235-41. doi:10.1016/j.prro.2016.02.001
Huang G, Medlam G, Lee J, et al. Error in the delivery of radiation therapy: Results of a quality assurance review. Int J Radiat Oncol Biol Phys. 2005;61(5):1590-5. doi:10.1016/j.ijrobp.2004.10.017
Wiant DB, Verchick Q, Gates P, et al. A novel method for radiotherapy patient identification using surface imaging. J Appl Clin Med Phys. 2016;17(2):271-8. doi:10.1120/jacmp.v17i2.6066
Novak A, Nyflot MJ, Ermoian RP, et al. Targeting safety improvements through identification of incident origination and detection in a near-miss incident learning system. Med Phys. 2016;43(5):2053-62. doi:10.1118/1.4944739
Lau SKM, Patel K, Kim T, et al. Clinical efficacy and safety of surface imaging guided radiosurgery (SIG-RS) in the treatment of benign skull base tumors. J Neurooncol. 2017;132(2):307-12. doi:10.1007/s11060-017-2370-7
Zhao H, Williams N, Poppe M, et al. Comparison of surface guidance and target matching for image-guided accelerated partial breast irradiation (APBI). Med Phys. 2019;46(11):4717-24. doi:10.1002/mp.13816
Gierga DP, Riboldi M, Turcotte JC, et al. Comparison of Target Registration Errors for Multiple Image-Guided Techniques in Accelerated Partial Breast Irradiation. Int J Radiat Oncol Biol Phys. 2008;70(4):1239-46. doi:10.1016/j.ijrobp.2007.11.020
Chang AJ, Zhao H, Wahab SH, et al. Video surface image guidance for external beam partial breast irradiation. Pract Radiat Oncol. 2012;2(2):97-105. doi:10.1016/j.prro.2011.06.013
Keall PJ, Mageras GS, Balter JM, et al. The management of respiratory motion in radiation oncology report of AAPM Task Group 76. Med Phys. 2006;33(10):3874-900. doi:10.1118/1.2349696
Korreman SS. Motion in radiotherapy: Photon therapy. Phys Med Biol. 2012;57(23). doi:10.1088/0031-9155/57/23/R161
Paganelli C, Whelan B, Peroni M, et al. MRI-guidance for motion management in external beam radiotherapy: Current status and future challenges. Phys Med Biol. 2018;63(22). doi:10.1088/1361-6560/aaebcf
Schwarz M, Cattaneo GM, Marrazzo L. Geometrical and dosimetrical uncertainties in hypofractionated radiotherapy of the lung: A review. Phys Medica. 2017;36:126-39. doi:10.1016/j.ejmp.2017.02.011
Haraldsson A, Ceberg S, Crister C, Engelholm S, Bäck SÅJ, Engström PE. PO-0978 Accurate positioning with decreased treatment time using surface guided tomotherapy. Radiother Oncol. 2019;133:S534-5. doi:10.1016/s0167-8140(19)31398-2
Padilla L, Havnen-Smith A, Cerviño L, Al-Hallaq HA. A survey of surface imaging use in radiation oncology in the United States. J Appl Clin Med Phys. 2019;20(12):70-7. doi:10.1002/acm2.12762
Crop F, Pasquier D, Baczkiewic A, et al. Surface imaging, laser positioning or volumetric imaging for breast cancer with nodal involvement treated by helical TomoTherapy. J Appl Clin Med Phys. 2016;17(5):200-11. doi:10.1120/jacmp.v17i5.6041
Walter F, Freislederer P, Belka C, Heinz C, Söhn M, Roeder F. Evaluation of daily patient positioning for radiotherapy with a commercial 3D surface-imaging system (CatalystTM). Radiat Oncol. 2016;11(1). doi:10.1186/s13014-016-0728-1
Heinzerling JH, Hampton CJ, Robinson M, et al. Use of surface-guided radiation therapy in combination with IGRT for setup and intrafraction motion monitoring during stereotactic body radiation therapy treatments of the lung and abdomen. J Appl Clin Med Phys. 2020;21(5):48-55. doi:10.1002/acm2.12852
Heinzerling JH, Hampton CJ, Robinson M, et al. Surface-Guided Radiation Therapy (SGRT) during Stereotactic Body Radiation Therapy Treatments (SBRT) of the Lung: Dosimetric Implications of Intrafraction Motion. Int J Radiat Oncol. 2019;105(1):E730. doi:10.1016/j.ijrobp.2019.06.819
Ricotti R, Ciardo D, Fattori G, et al. Intra-fraction respiratory motion and baseline drift during breast Helical Tomotherapy. Radiother Oncol. 2017;122(1):79-86. doi:10.1016/j.radonc.2016.07.019
Paravati AJ, Manger R, Nguyen JD, Olivares S, Kim GY, Murphy KT. Initial clinical experience with surface image guided (SIG) radiosurgery for trigeminal neuralgia. Transl Cancer Res. 2014;3(4):333-7. doi:10.3978/j.issn.2218-676X.2014.07.03
Mancosu P, Fogliata A, Stravato A, Tomatis S, Cozzi L, Scorsetti M. Accuracy evaluation of the optical surface monitoring system on EDGE linear accelerator in a phantom study. Med Dosim. 2016;41(2):173-9. doi:10.1016/j.meddos.2015.12.003
Jiang SB, Pope C, Al Jarrah KM, Kung JH, Bortfeld T, Chen GTY. An experimental investigation on intra-fractional organ motion effects in lung IMRT treatments. Phys Med Biol. 2003;48(12):1773-84. doi:10.1088/0031-9155/48/12/307
Shiinoki T, Kawamura S, Uehara T, et al. Quality Assurance for Respiratory-Gated Radiotherapy Using the Real-Time Tumor-Tracking Radiotherapy System. Int J Med Physics, Clin Eng Radiat Oncol. 2014;03(03):125-32. doi:10.4236/ijmpcero.2014.33018
Fledelius W, Keall PJ, Cho B, et al. Tracking latency in image-based dynamic MLC tracking with direct image access. Acta Oncol (Madr). 2011;50(6):952-9. doi:10.3109/0284186X.2011.581693
Jin JY, Yin FF. Time delay measurement for linac based treatment delivery in synchronized respiratory gating radiotherapy. Med Phys. 2005;32(5):1293-6. doi:10.1118/1.1896452
Smith WL, Becker N. Time delays and margins in gated radiotherapy. J Appl Clin Med Phys. 2009;10(3):140-54. doi:10.1120/jacmp.v10i3.2896
Chang Z, Liu T, Cai J, Chen Q, Wang Z, Yin F. SU-E-T-123: Evaluation of Integrated Gating Systems on a Novalis Tx System Using Quantitative Motion Tracking Analyses and Efficient Time-Delay Measurements. In: Medical Physics. Vol 38.; 2011:3514. doi:10.1118/1.3612074
Freislederer P, Reiner M, Hoischen W, et al. Characteristics of gated treatment using an optical surface imaging and gating system on an Elekta linac. Radiat Oncol. 2015;10(1). doi:10.1186/s13014-015-0376-x
Chen L, Bai S, Li G, et al. Accuracy of real-time respiratory motion tracking and time delay of gating radiotherapy based on optical surface imaging technique. Radiat Oncol. 2020;15(1). doi:10.1186/s13014-020-01611-6