A methodology for validation of skin-dose programs

Authors

  • Antonio Gañ´an Mora Servicio de Física Médica, Hospital Clínico San Carlos; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos.
  • Roberto Mariano Sánchez Casanueva Servicio de Física Médica, Hospital Clínico San Carlos; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos. Departamento de Radiología, Universidad Complutense de Madrid. https://orcid.org/0000-0003-3130-2362
  • José Miguel Fernández Soto Servicio de Física Médica, Hospital Clínico San Carlos; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos. Departamento de Radiología, Universidad Complutense de Madrid.

DOI:

https://doi.org/10.37004/sefm/2024.25.2.002

Keywords:

interventionism, patient protection, skin dose, skin dose programs, validation

Abstract

Objective. A methodology for facilitating the validation of skin dose estimation programs for interventional procedures is presented.

Materials and methods. The methodology uses a series of irradiations stored as DICOM Radiation Dose Structured Reports (RDSRs) as well as reference skin dose values measured in each irradiation. Users must input the RDSRs to their program and compare output doses with reference doses.

The authors performed 27 irradiations using two C-arms from different manufacturers. For each irradiation, the authors modified parameters that affect skin dose and measured it with an ionization chamber placed under a water phantom. The methodology was applied to validate the program SkinDose 2D.

Results. Experimental measurements have an uncertainty of 13% (k=2). SkinDose 2D dose predictions differ from measurements in -9% to +8%, within experimental uncertainty.

Conclusions. Varying different parameters that affect skin dose, this methodology allows for an initial validation of skin dose programs, characterizing them before any other additional measurement done by the user.

References

1. Balter S, Hopewell JW, Miller DL, Wagner LK, Zelefsky MJ. Fluoroscopically Guided Interventional Procedures: A Review of Radiation Effects on Patients’ Skin and Hair. Radiol 2010;254(2):326-41. https://doi.org/10.1148/radiol.2542082312

2. Jaschke W, Schmuth M, Trianni A, Bartral G. Radiation-Induced Skin Injuries to Patients: What the Interventional Radiologist Needs to Know. Cardiovasc Intervent Radiol 2017;(40):1131-40. https://doi.org/10.1007/s00270-017-1674-5

3. ICRP. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP publication 103. Annals of ICRP. 2007; 37(2-4).

4. Malchair F, Dabin J, Deleu M, Sans Merce M, Ciraj Bjelac O, Gallagher A, et al. Review of skin dose calculation software in interventional cardiology. Phys Med 2020;80:75-83. https://doi.org/10.1016/j.ejmp.2020.09.023

5. Khodadadegan Y, Zhang M, Pavlicek W, G. Paden R, Chong B, Huettl EA, et al. Validation and Initial Clinical Use of Automatic Peak Skin Dose Localization with Fluoroscopic and Interventional Procedures. Radiol 2013; 266(1): 246-55. https://doi.org/10.1148/radiol.12112295

6. Johnson PB, Borrego D, Balter S, Johnson K, Siragusa D, Bolch WE. Skin dose mapping for fluoroscopically guided interventions. Med Phys 2011;38(10):5490-9. https://doi.org/10.1118/1.3633935

7. Benmakhlouf H, Bouchard H, Fransson A, Andreo P. Backscatter factors and mass energy-absorption coefficient ratios for diagnostic radiology dosimetry. Phys Med Biol 2011; 56(22): 7179. https://doi.org/10.1088/0031-9155/56/22/012

8. ICRU. Patient dosimetry for x rays used in medical imaging. Journal of the ICRU. 2005;5(2).

9. IAEA. Dosimetry in Diagnostic Radiology: An International Code of Practice Vienna: International Atomic Energy Agency;2007.

10. Andersson J, Bednarek DR, Bolch W, Boltz T, Bosmans H, Gislason-Lee AJ, et al. Estimation of patient skin dose in fluoroscopy: summary of a joint report by AAPM TG357 and EFOMP. Med Phys 2021;48(7):671-96. https://doi.org/10.1002/mp.14910

11. DeLorenzo MC, Yang K, Liu B. Comprehensive evaluation of broad-beam transmission of patient supports from three fluoroscopy-guided interventional systems. Med Phys 2018;45(4):1425-32. https://doi.org/10.1002/mp.12803

12. Greffier J, Grussenmeyer-Mary N, Larbi A, Goupil J, Cayla G, Ledermann B, et al. Experimental evaluation of a radiation dose management system-integrated 3D skin dose map by comparison with XR-RV3 Gafchromic® films. Phys Med 2019;66:77-87. https://doi.org/10.1016/j.ejmp.2019.09.234

13. Farah J, Trianni A, Ciraj-Bjelac O, Clairand I, De Angelis C, Delle Canne S, et al. Characterization of XR-RV3 GafChromic® films in standard laboratory and in clinical conditions and means to evaluate uncertainties and reduce errors. Med Phys 2015;42: 4211-26. https://doi.org/10.1118/1.4922132

14. Rana VK, Rudin S, Bednarek DR. A tracking system to calculate patient skin dose in real-time during neurointerventional procedures using a biplane x-ray imaging system. Med Phys 2016;43(9):5131-44. https://doi.org/10.1118/1.4960368

15. Jérémie Dabin VBCBO, Deleu M, De Monte F, Feghali JA, Gallagher A, Knežević Ž, et al. Accuracy of skin dose mapping in interventional cardiology: Comparison of 10 software products following a common protocol. Phys Med 2021;82:279-94. https://doi.org/10.1016/j.ejmp.2021.02.016

16. International Electrotechnical Comission. Medical electrical equipment - Part 2-43: Particular requirements for the basic safety and essential performance of X-ray equipment for interventional procedures;2022.

17. Vañó E, Fernández Soto JM, Ten JI, Sánchez Casanueva R. Benefits and limitations for the use of radiation dose management systems in medical imaging. Practical experience in a university hospital. Br J Radiol 2022;95:1133. https://doi.org/ 0.1259/bjr.20211340

18. Lafarge T, Possolo A. The NIST Uncertainty Machine. NCSLI Measure Journal of Meas Sc 2017;10(3):20-7. https://doi.org/10.1080/19315775.2015.11721732

19. BIPM; IEC; IFCC; ILAC; ISO; IUPAC; IUPAP; OIML. Evaluation of measurement data - Guide to the expression of uncertainty in measurement;2008.

20. BIPM; IEC; IFCC; ILAC; ISO; IUPAC; IUPAP; OIML. Evaluation of measurement data - Supplement 1 to the "Guide to the expression of uncertainty in measurement" - Propagation of distributions using a Monte Carlo method;2008.

21. Krajinović M, Vujisić M, Olivera CB. Uncertainty associated with the use of software solutions utilizing DICOM RDSR for skin dose assessment in interventional radiology and cardiology. Rad Prot Dos 2021;196(3-4):129-35. https://doi.org/10.1093/rpd/ncab146

Downloads

Published

2024-11-04

Issue

Section

Scientific articles

How to Cite

A methodology for validation of skin-dose programs. (2024). Revista De Física Médica, 25(2), 25-34. https://doi.org/10.37004/sefm/2024.25.2.002

Similar Articles

11-20 of 239

You may also start an advanced similarity search for this article.