Comparison of Planning Techniques in Radiotherapy for Breast Cancer: A Multicentre Study in Hospital Medical Physics Teaching Units.
DOI:
https://doi.org/10.37004/sefm/2025.26.2.001Keywords:
Breast cancer, Radiotherapy, Teaching unit, competency-based learning, multicenter studyAbstract
We propose an exercise that applies competency-based learning and evaluates the variety of external radiotherapy techniques used in different teaching units in Spain to treat breast cancer.
Those attending the Fundamentals of Medical Physics course filled in a form where they presented the techniques used in their hospitals. The information for planning (tomographic images and structures) in free breathing and forced inspiration was shared with them and they made a planning according to the usual techniques of each hospital. A code was developed to compare data from different planners and the statistical significance of the dosimetric difference in different volumes was analyzed.
The results show a wide variety of techniques used, with 3D conformal radiotherapy (37.5%) and volumetric intensity-modulated arc therapy (34.4%) standing out. Regarding planning, better coverage of target volumes and lower dose to organs at risk was obtained for the patient treated in forced inspiration. The influence of the resident's training time was also analyzed.
The proposed exercise serves to evaluate the resident's skill in radiotherapy planning for breast cancer treatment. The data to replicate the exercise are available in a repository.
References
1. Roumeliotis M, Morrison H, Conroy L, et al. Competency-Based Medical Education in Radiation Therapy Treatment Planning. Pract Radiat Oncol 2022;12(3):e232–e238; doi: 10.1016/j.prro.2021.12.003. DOI: https://doi.org/10.1016/j.prro.2021.12.003
2. Colmenares R, Angulo-Paín E, Brualla-González L, et al. Medical Physics in Spain: Current status and challenges. Medical Physics International 2021; 9(2) (https://www.efomp.org/uploads/c81540e6-c95d-4ae0-ba3b-844714aba-a9e/MPI-2021-02.pdf)
3. Garibaldi C, Essers M, Heijmen B, et al. The 3rd ESTRO-EFOMP core curriculum for medical physics experts in radiotherapy. Radiother Oncol 2022;170:89–94; doi: 10.1016/j.radonc.2022.02.012. DOI: https://doi.org/10.1016/j.radonc.2022.02.012
4. Moideen N, De Metz C, Kalyvas M, et al. Aligning Requirements of Training and Assessment in Radiation Treatment Planning in the Era of Competency-Based Medical Education. Int J Radiat Oncol 2020;106(1):32–36; doi: 10.1016/j.ijrobp.2019.10.005. DOI: https://doi.org/10.1016/j.ijrobp.2019.10.005
5. Fiorino C, Guckenberger M, Schwarz M, et al. Technology-driven research for radiotherapy innovation. Mol Oncol 2020;14(7):1500–1513; doi: 10.1002/1878-0261.12659. DOI: https://doi.org/10.1002/1878-0261.12659
6. García Romero A, Hernández Masgrau V, Baeza Trujillo M, et al. Resultados de la encuesta de la Sociedad Española de Física Médica sobre de control de calidad de sistemas de planificación de tratamientos en el ámbito de haces de fotones y electrones de radioterapia externa. Rev Física Médica 2021;2(22):55–66; doi: 10.37004/sefm/2021.22.2.006. DOI: https://doi.org/10.37004/sefm/2021.22.2.006
7. Bortfeld T. IMRT: a review and preview. Phys Med Biol 2006;51(13):R363–R379; doi: 10.1088/0031-9155/51/13/R21. DOI: https://doi.org/10.1088/0031-9155/51/13/R21
8. Otto K. Volumetric modulated arc therapy: IMRT in a single gantry arc. Med Phys 2008;35(1):310–317; doi: 10.1118/1.2818738. DOI: https://doi.org/10.1118/1.2818738
9. Zhang Q, Liu J, Ao N, et al. Secondary cancer risk after radiation therapy for breast cancer with different radiotherapy techniques. Sci Rep 2020;10(1):1220; doi: 10.1038/s41598-020-58134-z. DOI: https://doi.org/10.1038/s41598-020-58134-z
10. Racka I, Majewska K, Winiecki J. Three-dimensional conformal radiotherapy (3D-CRT) vs. volumetric modulated arc therapy (VMAT) in deep inspiration breath-hold (DIBH) technique in left-sided breast cancer patients—comparative analysis of dose distribution and estimation of projected secondary cancer risk. Strahlenther Onkol 2023;199(1):90–101; doi: 10.1007/s00066-022-01979-2. DOI: https://doi.org/10.1007/s00066-022-01979-2
11. Koivumäki T, Heikkilä J, Väänänen A, et al. Flattening filter free technique in breath-hold treatments of left-sided breast cancer: The effect on beam-on time and dose distributions. Radiother Oncol 2016;118(1):194–198; doi: 10.1016/j.radonc.2015.11.032. DOI: https://doi.org/10.1016/j.radonc.2015.11.032
12. Heikkilä A, Boman E, Rossi M, et al. Dosimetric effect of rotational setup errors in volumetric modulated arc therapy and field-in-field treatment of left-sided breast cancer. Phys Med 2024;117:103203; doi: 10.1016/j.ejmp.2023.103203. DOI: https://doi.org/10.1016/j.ejmp.2023.103203
13. Koivumäki T, Fogliata A, Zeverino M, et al. Dosimetric evaluation of modern radiation therapy techniques for left breast in deep-inspiration breath-hold. Phys Med 2018;45:82–87; doi: 10.1016/j.ejmp.2017.12.009. DOI: https://doi.org/10.1016/j.ejmp.2017.12.009
14. Mankinen M, Virén T, Seppälä J, et al. Dosimetric effect of respiratory motion on planned dose in whole-breast volumetric modulated arc therapy using moderate and ultra-hypo-fractionation. Radiat Oncol 2022;17(1):46; doi: 10.1186/s13014-022-02014-5. DOI: https://doi.org/10.1186/s13014-022-02014-5
15. Huijskens S, Granton P, Fremeijer K, et al. Clinical practicality and patient performance for surface-guided automated VMAT gating for DIBH breast cancer radiotherapy. Radiother Oncol 2024;195:110229; doi: 10.1016/j.radonc.2024.110229. DOI: https://doi.org/10.1016/j.radonc.2024.110229
16. Meattini I, Becherini C, Boersma L, et al. European Society for Radiotherapy and Oncology Advisory Committee in Radiation Oncology Practice consensus recommendations on patient selection and dose and fractionation for external beam radiotherapy in early breast cancer. Lancet Oncol 2022;23(1):e21–e31; doi: 10.1016/S1470-2045(21)00539-8. DOI: https://doi.org/10.1016/S1470-2045(21)00539-8
17. Hurkmans C, Duisters C, Peters-Verhoeven M, et al. Harmonization of breast cancer radiotherapy treatment planning in the Netherlands. Tech Innov Patient Support Radiat Oncol 2021;19:26–32; doi: 10.1016/j.tipsro.2021.06.004. DOI: https://doi.org/10.1016/j.tipsro.2021.06.004
18. Milligan MG, Zieminski S, Johnson A, et al. Target coverage and cardiopulmonary sparing with the updated ESTRO-ACROP contouring guidelines for postmastectomy radiation therapy after breast reconstruction: a treatment planning study using VMAT and proton PBS techniques. Acta Oncol 2021;60(11):1440–1451; doi: 10.1080/0284186X.2021.1957499. DOI: https://doi.org/10.1080/0284186X.2021.1957499
19. Breast Cancer Expert Panel of the German Society of Radiation Oncology (DEGRO), Duma M-N, Baumann R, et al. Heart-sparing radiotherapy techniques in breast cancer patients: a recommendation of the breast cancer expert panel of the German society of radiation oncology (DEGRO). Strahlenther Onkol 2019;195(10):861–871; doi: 10.1007/s00066-019-01495-w. DOI: https://doi.org/10.1007/s00066-019-01495-w
20. Radiation Therapy Oncology Group. A Phase III Trial of Accelerated Whole Breast Irradiation With Hypofractionation Plus Concurrent Boost Versus Standard Whole Breast Irradiation Plus Sequential Boost for Early-Stage Breast Cancer. Clinical trial registration. clinicaltrials.gov NCT01349322; 2024.
21. Offersen BV, Boersma LJ, Kirkove C, et al. ESTRO consensus guideline on target volume delineation for elective radiation therapy of early stage breast cancer. Radiother Oncol 2015;114(1):3–10; doi: 10.1016/j.radonc.2014.11.030. DOI: https://doi.org/10.1016/j.radonc.2014.11.030
22. Chen G-P, Liu F, White J, et al. A planning comparison of 7 irradiation options allowed in RTOG 1005 for early-stage breast cancer. Med Dosim 2015;40(1):21–25; doi: 10.1016/j.meddos.2014.06.007. DOI: https://doi.org/10.1016/j.meddos.2014.06.007
23. Li XA, Moughan J, White JR, et al. Patterns of Failure Observed in the 2-Step Institution Credentialing Process for NRG Oncology/Radiation Therapy Oncology Group 1005 (NCT01349322) and Lessons Learned. Pract Radiat Oncol 2020;10(4):265–273; doi: 10.1016/j.prro.2019.11.007. DOI: https://doi.org/10.1016/j.prro.2019.11.007
24. Rago M, Placidi L, Polsoni M, et al. Evaluation of a generalized knowledge-based planning performance for VMAT irradiation of breast and locoregional lymph nodes—Internal mammary and/or supraclavicular regions. PLOS ONE 2021;16(1):e0245305; doi: 10.1371/journal.pone.0245305. DOI: https://doi.org/10.1371/journal.pone.0245305