Comparison of Planning Techniques in Radiotherapy for Breast Cancer: A Multicentre Study in Hospital Medical Physics Teaching Units.

Authors

  • Rafael Ayala Lázaro Servicio de Dosimetría y Radioprotección, Hospital General Universitario Gregorio Marañón. Grupo de Física Nuclear e IPARCOS, Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid. https://orcid.org/0000-0001-6925-6176
  • Francisco Javier Jiménez Albericio Servicio de Física y Protección Radiológica, Hospital Clínico Universitario Lozano Blesa. Centro de Astropartículas y Física de Altas Energías, Universidad de Zaragoza. https://orcid.org/0009-0002-2118-5676
  • María Luisa Ferrández Millán Servicio de Oncología Radioterápica, Hospital Clínico Universitario Lozano Blesa.
  • Antonio López Medina Servicio de Radiofísica, Complejo Hospitalario Universitario de Vigo. https://orcid.org/0000-0003-0919-2566
  • Julien Alcaide de Wandeleer Servicio de Oncología Radioterápica y Radiofísica, Hospital Universitari i Politecnic La Fe de Valencia. https://orcid.org/0009-0007-5425-2210
  • Emilio Altozano Ruiz Servicio de Radiofísica y Protección Radiológica, Hospital Universitario Virgen de las Nieves.
  • Lorena Alvarez Bernardo Servei de Protecció Radiològica i Fisica Mèdica, Hospital Universitari Sant Joan de Reus. https://orcid.org/0009-0003-3712-957X
  • Alberto Angulo Santos Servicio de Radiofísica y Protección Radiológica, Instituto Valenciano de Oncología. https://orcid.org/0009-0007-5386-221X
  • Pablo Arias Castro Servicio de Radiofísica Hospitalaria, Hospital Universitario Son Espases.
  • Beatriz Casasola Muñoz Servicio de Radiofísica, Hospital Universitario Puerta del Mar. https://orcid.org/0009-0008-5080-2294
  • Rubén Chillida Rey Servicio de Radiofísica y Protección Radiológica, Hospital Universitario Ramón y Cajal.
  • José Antonio Cuesta Reina Servicio de Dosimetría y Radioprotección, Hospital General Universitario Gregorio Marañón.
  • Sara Delgado Espinosa Servicio de Radiofísica, Hospital Universitario Virgen del Rocío.
  • Laura Díaz Tomé Servicio de Radiofísica, Hospital Universitario San Cecilio.
  • Óscar Estrada Pastor Servicio de Radiofísica y Protección Radiológica, Complejo Hospitalario Doctor Negrín. https://orcid.org/0000-0001-8210-1064
  • Tatiana Fernández Sánchez Servicio de Radiofísica y Protección Radiológica, Hospital Universitario Reina Sofía. https://orcid.org/0009-0005-4611-6724
  • Antonio Gañán Mora Servicio de Física Médica, Hospital Universitario Clínico San Carlos.
  • Nicolás García Iglesias Servicio de Radiofísica y Protección Radiológica, Hospital Universitario de Navarra.
  • Tomás González González Servicio de Física y Protección Radiológica, Hospital Universitario Miguel Servet.
  • Elena González González Servicio de Física y Protección Radiológica, Hospital Clínico Universitario Lozano Blesa.
  • Pedro Matías Liñán Rodríguez Servicio de Radiofísica Hospitalaria, Hospital Universitario Puerta de Hierro. https://orcid.org/0009-0008-7645-9201
  • Paula Llamas Martínez Servicio de Protección Radiológica y Radiofísica Hospitalaria, Complejo Hospitalario Universitario de Badajoz.
  • María Martín Fontán Servicio de Radiofísica Hospitalaria, Hospital Universitario 12 de Octubre.
  • Alberto Martínez Moreno Servicio de Radiofísica y Protección Radiológica, Clínica Universidad de Navarra. https://orcid.org/0009-0008-7039-5569
  • Daniel Alexander Musson Gómez Servicio de Dosimetría y Radioprotección, Hospital General Universitario Gregorio Marañón.
  • Nuria Naranjo Jiménez Servicio de Radiofísica Hospitalaria, Hospital Regional Universitario de Málaga.
  • Guillermo Paradela Díaz Servicio de Radiofísica y Protección Radiológica, Hospital Universitario de La Princesa. https://orcid.org/0009-0009-2977-4118
  • Francisco Piqueras Guardiola Servicio de Física Médica, Hospital Universitario de Canarias.
  • Jaime Reverter Pérez Servicio de Radiofísica, Complejo Hospitalario Universitario de Vigo.
  • Víctor Ríu Molinero Servei de Radiofísica i Radioprotecció, Hospital de la Santa Creu i Sant Pau. https://orcid.org/0009-0004-5778-9070
  • Jesús Javier Rivas Morales Servicio de Radiofísica y Protección Radiológica, Hospital General Universitario de Ciudad Real.
  • Miriam Sánchez Pérez Servicio de Radiofísica y Protección Radiológica, Hospital Clínico Universitario de Valladolid. https://orcid.org/0000-0003-4652-6684
  • Rafael Manuel Segovia Brome Servicio de Oncología Radioterápica, Hospital Universitario Virgen Macarena. https://orcid.org/0009-0000-2184-6847
  • Javier Uzquiza López Servicio de Radiofísica y Protección Radiológica, Hospital Universitario Marqués de Valdecilla. https://orcid.org/0009-0004-2177-7713
  • Guillermo Veiguela Prado Servicio de Física Médica y Protección Radiológica, Hospital Universitario Central de Asturias. https://orcid.org/0009-0003-3236-2583
  • Rodrigo Vicente Bernal Servicio de Radiofísica y Protección Radiológica, Complejo Asistencial Universitario de Salamanca.
  • Naia Nereda Barroeta Servicio de Oncología Radioterápica, Hospital Universitario de Basurto.

DOI:

https://doi.org/10.37004/sefm/2025.26.2.001

Keywords:

Breast cancer, Radiotherapy, Teaching unit, competency-based learning, multicenter study

Abstract

We propose an exercise that applies competency-based learning and evaluates the variety of external radiotherapy techniques used in different teaching units in Spain to treat breast cancer. 

Those attending the Fundamentals of Medical Physics course filled in a form where they presented the techniques used in their hospitals. The information for planning (tomographic images and structures) in free breathing and forced inspiration was shared with them and they made a planning according to the usual techniques of each hospital. A code was developed to compare data from different planners and the statistical significance of the dosimetric difference in different volumes was analyzed.

The results show a wide variety of techniques used, with 3D conformal radiotherapy (37.5%) and volumetric intensity-modulated arc therapy (34.4%) standing out. Regarding planning, better coverage of target volumes and lower dose to organs at risk was obtained for the patient treated in forced inspiration. The influence of the resident's training time was also analyzed.

The proposed exercise serves to evaluate the resident's skill in radiotherapy planning for breast cancer treatment. The data to replicate the exercise are available in a repository.

References

1. Roumeliotis M, Morrison H, Conroy L, et al. Competency-Based Medical Education in Radiation Therapy Treatment Planning. Pract Radiat Oncol 2022;12(3):e232–e238; doi: 10.1016/j.prro.2021.12.003. DOI: https://doi.org/10.1016/j.prro.2021.12.003

2. Colmenares R, Angulo-Paín E, Brualla-González L, et al. Medical Physics in Spain: Current status and challenges. Medical Physics International 2021; 9(2) (https://www.efomp.org/uploads/c81540e6-c95d-4ae0-ba3b-844714aba-a9e/MPI-2021-02.pdf)

3. Garibaldi C, Essers M, Heijmen B, et al. The 3rd ESTRO-EFOMP core curriculum for medical physics experts in radiotherapy. Radiother Oncol 2022;170:89–94; doi: 10.1016/j.radonc.2022.02.012. DOI: https://doi.org/10.1016/j.radonc.2022.02.012

4. Moideen N, De Metz C, Kalyvas M, et al. Aligning Requirements of Training and Assessment in Radiation Treatment Planning in the Era of Competency-Based Medical Education. Int J Radiat Oncol 2020;106(1):32–36; doi: 10.1016/j.ijrobp.2019.10.005. DOI: https://doi.org/10.1016/j.ijrobp.2019.10.005

5. Fiorino C, Guckenberger M, Schwarz M, et al. Technology-driven research for radiotherapy innovation. Mol Oncol 2020;14(7):1500–1513; doi: 10.1002/1878-0261.12659. DOI: https://doi.org/10.1002/1878-0261.12659

6. García Romero A, Hernández Masgrau V, Baeza Trujillo M, et al. Resultados de la encuesta de la Sociedad Española de Física Médica sobre de control de calidad de sistemas de planificación de tratamientos en el ámbito de haces de fotones y electrones de radioterapia externa. Rev Física Médica 2021;2(22):55–66; doi: 10.37004/sefm/2021.22.2.006. DOI: https://doi.org/10.37004/sefm/2021.22.2.006

7. Bortfeld T. IMRT: a review and preview. Phys Med Biol 2006;51(13):R363–R379; doi: 10.1088/0031-9155/51/13/R21. DOI: https://doi.org/10.1088/0031-9155/51/13/R21

8. Otto K. Volumetric modulated arc therapy: IMRT in a single gantry arc. Med Phys 2008;35(1):310–317; doi: 10.1118/1.2818738. DOI: https://doi.org/10.1118/1.2818738

9. Zhang Q, Liu J, Ao N, et al. Secondary cancer risk after radiation therapy for breast cancer with different radiotherapy techniques. Sci Rep 2020;10(1):1220; doi: 10.1038/s41598-020-58134-z. DOI: https://doi.org/10.1038/s41598-020-58134-z

10. Racka I, Majewska K, Winiecki J. Three-dimensional conformal radiotherapy (3D-CRT) vs. volumetric modulated arc therapy (VMAT) in deep inspiration breath-hold (DIBH) technique in left-sided breast cancer patients—comparative analysis of dose distribution and estimation of projected secondary cancer risk. Strahlenther Onkol 2023;199(1):90–101; doi: 10.1007/s00066-022-01979-2. DOI: https://doi.org/10.1007/s00066-022-01979-2

11. Koivumäki T, Heikkilä J, Väänänen A, et al. Flattening filter free technique in breath-hold treatments of left-sided breast cancer: The effect on beam-on time and dose distributions. Radiother Oncol 2016;118(1):194–198; doi: 10.1016/j.radonc.2015.11.032. DOI: https://doi.org/10.1016/j.radonc.2015.11.032

12. Heikkilä A, Boman E, Rossi M, et al. Dosimetric effect of rotational setup errors in volumetric modulated arc therapy and field-in-field treatment of left-sided breast cancer. Phys Med 2024;117:103203; doi: 10.1016/j.ejmp.2023.103203. DOI: https://doi.org/10.1016/j.ejmp.2023.103203

13. Koivumäki T, Fogliata A, Zeverino M, et al. Dosimetric evaluation of modern radiation therapy techniques for left breast in deep-inspiration breath-hold. Phys Med 2018;45:82–87; doi: 10.1016/j.ejmp.2017.12.009. DOI: https://doi.org/10.1016/j.ejmp.2017.12.009

14. Mankinen M, Virén T, Seppälä J, et al. Dosimetric effect of respiratory motion on planned dose in whole-breast volumetric modulated arc therapy using moderate and ultra-hypo-fractionation. Radiat Oncol 2022;17(1):46; doi: 10.1186/s13014-022-02014-5. DOI: https://doi.org/10.1186/s13014-022-02014-5

15. Huijskens S, Granton P, Fremeijer K, et al. Clinical practicality and patient performance for surface-guided automated VMAT gating for DIBH breast cancer radiotherapy. Radiother Oncol 2024;195:110229; doi: 10.1016/j.radonc.2024.110229. DOI: https://doi.org/10.1016/j.radonc.2024.110229

16. Meattini I, Becherini C, Boersma L, et al. European Society for Radiotherapy and Oncology Advisory Committee in Radiation Oncology Practice consensus recommendations on patient selection and dose and fractionation for external beam radiotherapy in early breast cancer. Lancet Oncol 2022;23(1):e21–e31; doi: 10.1016/S1470-2045(21)00539-8. DOI: https://doi.org/10.1016/S1470-2045(21)00539-8

17. Hurkmans C, Duisters C, Peters-Verhoeven M, et al. Harmonization of breast cancer radiotherapy treatment planning in the Netherlands. Tech Innov Patient Support Radiat Oncol 2021;19:26–32; doi: 10.1016/j.tipsro.2021.06.004. DOI: https://doi.org/10.1016/j.tipsro.2021.06.004

18. Milligan MG, Zieminski S, Johnson A, et al. Target coverage and cardiopulmonary sparing with the updated ESTRO-ACROP contouring guidelines for postmastectomy radiation therapy after breast reconstruction: a treatment planning study using VMAT and proton PBS techniques. Acta Oncol 2021;60(11):1440–1451; doi: 10.1080/0284186X.2021.1957499. DOI: https://doi.org/10.1080/0284186X.2021.1957499

19. Breast Cancer Expert Panel of the German Society of Radiation Oncology (DEGRO), Duma M-N, Baumann R, et al. Heart-sparing radiotherapy techniques in breast cancer patients: a recommendation of the breast cancer expert panel of the German society of radiation oncology (DEGRO). Strahlenther Onkol 2019;195(10):861–871; doi: 10.1007/s00066-019-01495-w. DOI: https://doi.org/10.1007/s00066-019-01495-w

20. Radiation Therapy Oncology Group. A Phase III Trial of Accelerated Whole Breast Irradiation With Hypofractionation Plus Concurrent Boost Versus Standard Whole Breast Irradiation Plus Sequential Boost for Early-Stage Breast Cancer. Clinical trial registration. clinicaltrials.gov NCT01349322; 2024.

21. Offersen BV, Boersma LJ, Kirkove C, et al. ESTRO consensus guideline on target volume delineation for elective radiation therapy of early stage breast cancer. Radiother Oncol 2015;114(1):3–10; doi: 10.1016/j.radonc.2014.11.030. DOI: https://doi.org/10.1016/j.radonc.2014.11.030

22. Chen G-P, Liu F, White J, et al. A planning comparison of 7 irradiation options allowed in RTOG 1005 for early-stage breast cancer. Med Dosim 2015;40(1):21–25; doi: 10.1016/j.meddos.2014.06.007. DOI: https://doi.org/10.1016/j.meddos.2014.06.007

23. Li XA, Moughan J, White JR, et al. Patterns of Failure Observed in the 2-Step Institution Credentialing Process for NRG Oncology/Radiation Therapy Oncology Group 1005 (NCT01349322) and Lessons Learned. Pract Radiat Oncol 2020;10(4):265–273; doi: 10.1016/j.prro.2019.11.007. DOI: https://doi.org/10.1016/j.prro.2019.11.007

24. Rago M, Placidi L, Polsoni M, et al. Evaluation of a generalized knowledge-based planning performance for VMAT irradiation of breast and locoregional lymph nodes—Internal mammary and/or supraclavicular regions. PLOS ONE 2021;16(1):e0245305; doi: 10.1371/journal.pone.0245305. DOI: https://doi.org/10.1371/journal.pone.0245305

Downloads

Published

2025-11-28

Issue

Section

Scientific articles

How to Cite

Comparison of Planning Techniques in Radiotherapy for Breast Cancer: A Multicentre Study in Hospital Medical Physics Teaching Units. (2025). Revista De Física Médica, 26(2), 11-25. https://doi.org/10.37004/sefm/2025.26.2.001

Similar Articles

1-10 of 248

You may also start an advanced similarity search for this article.