Commissioning of an MR‐linac Elekta Unity

Authors

  • Carlos Ferrer Gracia Servicio de Radiofísica y Radioprotección, Hospital Universitario la Paz, Paseo de la Castellana, 261, 28046 Madrid. https://orcid.org/0000-0003-2837-5210
  • Concepción Huertas Martínez Servicio de Radiofísica y Radioprotección, Hospital Universitario la Paz, Paseo de la Castellana, 261, 28046 Madrid. https://orcid.org/0000-0001-7169-8571
  • David García Riñón Servicio de Radiofísica y Radioprotección, Hospital Universitario la Paz, Paseo de la Castellana, 261, 28046 Madrid. https://orcid.org/0000-0002-6504-4894
  • Marcos Martínez Sánchez Servicio de Radiofísica y Radioprotección, Hospital Universitario la Paz, Paseo de la Castellana, 261, 28046 Madrid. https://orcid.org/0009-0001-4954-520X
  • Giorgia Yang Servicio de Radiofísica y Radioprotección, Hospital Universitario la Paz, Paseo de la Castellana, 261, 28046 Madrid. https://orcid.org/0009-0005-5146-2082
  • Miguel Barroso Miranda Servicio de Radiofísica y Radioprotección, Hospital Universitario la Paz, Paseo de la Castellana, 261, 28046 Madrid.
  • Moisés Sáez Beltrán Servicio de Radiofísica y Radioprotección, Hospital Universitario la Paz, Paseo de la Castellana, 261, 28046 Madrid. https://orcid.org/0000-0002-9990-3941

DOI:

https://doi.org/10.37004/sefm/2024.25.1.002

Keywords:

commissioning, MR-linac, Unity, adaptive radiotherapy

Abstract

The combination of a linear accelerator with a magnetic resonance has given rise to magnetic resonance image-guided radiotherapy systems, known as MR-linac. These systems take advantage of the magnetic resonance image to locate the tumor and the position of healthy organs and make it possible to adapt the treatment plan for each fraction, as well as to visualize the patient's anatomy during treatment, while irradiation is taking place. The combination of both devices adds a degree of complexity to the commissioning process. This work describes the measurements made during the commissioning of those corresponding to the linear accelerator, the magnetic resonance, and the combination of both devices. All measurement results met the established tolerances, and only an improvement in the accuracy of the MLC position was required. The performance tests of the system with IMRT treatments exceeded the gamma index 3%/3 mm and 5% background threshold with values above 95% while the measurement with ionization chamber differed by a maximum of 0.87% with respect to that calculated by the TPS.

References

Franzone P, Fiorentino A, Barra S, et al. Image-guided radiation therapy (IGRT): practical recommendations of Italian Association of Radiation Oncology (AIRO). Radiol Medica. 2016;121(12):958-965. https://doi.org/10.1007/s11547-016-0674-x

Raaymakers BW, Raaijmakers AJE, Kotte ANTJ, Jette D, Lagendijk JJW. Integrating a MRI scanner with a 6 MV radiotherapy accelerator: Dose deposition in a transverse magnetic field. Phys Med Biol. 2004;49(17):4109-4118. https://doi.org/10.1088/0031-9155/49/17/019

Raaymakers B, Lagendijk J, Overweg J, et al. Integrated 1.5 T Mri and Accelerator: Proof of Concept for Real-Tim E Mri Guided Radiotherapy. Radiother Oncol. 2009;92:S33. https://doi.org/10.1016/s0167-8140(12)72672-5

Raaymakers BW, Jürgenliemk-Schulz IM, Bol GH, et al. First patients treated with a 1.5 T MRI-Linac: Clinical proof of concept of a high-precision, high-field MRI guided radiotherapy treatment. Phys Med Biol. 2017;62(23):L41-L50. https://doi.org/10.1088/1361-6560/aa9517

Lagendijk JJW, Raaymakers BW, Raaijmakers AJE, et al. MRI/linac integration. Radiother Oncol. 2008;86(1):25-29. https://doi.org/10.1016/j.radonc.2007.10.034

Winkel D, Bol GH, Kroon PS, et al. Adaptive radiotherapy: The Elekta Unity MR-linac concept. Clin Transl Radiat Oncol. 2019;18:54-59. https://doi.org/10.1016/j.ctro.2019.04.001

Kapanen M, Collan J, Beule A, Seppälä T, Saarilahti K, Tenhunen M. Commissioning of MRI-only based treatment planning procedure for external beam radiotherapy of prostate. Magn Reson Med. 2013;70(1). https://doi.org/10.1002/mrm.24459

Liney GP, Owen SC, Beaumont AKE, Lazar VR, Manton DJ, Beavis AW. Commissioning of a new wide-bore MRI scanner for radiotherapy planning of head and neck cancer. Br J Radiol. 2013;86(1027). https://doi.org/10.1259/bjr.20130150

Meijsing I, Raaymakers BW, Raaijmakers AJE, et al. Dosimetry for the MRI accelerator: The impact of a magnetic field on the response of a Farmer NE2571 ionization chamber. Phys Med Biol. 2009;54(10):2993-3002. https://doi.org/10.1088/0031-9155/54/10/002

Malkov VN, Hackett SL, Wolthaus JWH, Raaymakers BW, Van Asselen B. Monte Carlo simulations of out-of-field surface doses due to the electron streaming effect in orthogonal magnetic fields. Phys Med Biol. 2019;64(11). https://doi.org/10.1088/1361-6560/ab0aa0

Raaijmakers AJE, Raaymakers BW, Lagendijk JJW. Integrating a MRI scanner with a 6 MV radiotherapy accelerator: Dose increase at tissue-air interfaces in a lateral magnetic field due to returning electrons. Phys Med Biol. 2005;50(7). https://doi.org/10.1088/0031-9155/50/7/002

Klein EE, Hanley J, Bayouth J, et al. Task group 142 report: Quality assurance of medical accelerators. Med Phys. 2009;36(9):4197-4212. https://doi.org/10.1118/1.3190392

Das IJ, Cheng C-WW, Watts RJ, et al. Accelerator beam data commissioning equipment and procedures: Report of the TG-106 of the Therapy Physics Committee of the AAPM. Med Phys. 2008;35(9):4186-4215. https://doi.org/10.1118/1.2969070

Glide-Hurst C, Bellon M, Foster R, et al. Commissioning of the Varian TrueBeam linear accelerator: A multi-institutional study. Med Phys. 2013;40(3). https://doi.org/10.1118/1.4790563

Narayanasamy G, Saenz D, Cruz W, Ha CS, Papanikolaou N, Stathakis S. Commissioning an Elekta Versa HD linear accelerator. J Appl Clin Med Phys. 2016;17(1):179-191. https://doi.org/10.1120/jacmp.v17i1.5799

Snyder JE, St-Aubin J, Yaddanapudi S, et al. Commissioning of a 1.5T Elekta Unity MR-linac: A single institution experience. J Appl Clin Med Phys. 2020;21(7):160-172. https://doi.org/10.1002/acm2.12902

Powers M, Baines J, Crane R, et al. Commissioning measurements on an Elekta Unity MR-Linac. Phys Eng Sci Med. 2022;45(2). https://doi.org/10.1007/s13246-022-01113-7

Subashi E, Dresner A, Tyagi N. Longitudinal assessment of quality assurance measurements in a 1.5T MR-linac: Part II—Magnetic resonance imaging. J Appl Clin Med Phys. 2022;23(6). https://doi.org/10.1002/acm2.13586

Subashi E, Lim SB, Gonzalez X, Tyagi N. Longitudinal assessment of quality assurance measurements in a 1.5T MR-linac: Part I—Linear accelerator. J Appl Clin Med Phys. 2021;22(10):190-201. https://doi.org/10.1002/acm2.13418

Roberts DA, Sandin C, Vesanen PT, et al. Machine QA for the Elekta Unity system: A Report from the Elekta MR-linac consortium. Med Phys. 2021;48(5). https://doi.org/10.1002/mp.14764

Woodings SJ, Bluemink JJ, De Vries JHW, et al. Beam characterisation of the 1.5 T MRI-linac. Phys Med Biol. 2018;63(8). https://doi.org/10.1088/1361-6560/aab566

Woodings SJ, de Vries JHW, Kok JMG, et al. Acceptance procedure for the linear accelerator component of the 1.5 T MRI-linac. J Appl Clin Med Phys. 2021;22(8). https://doi.org/10.1002/acm2.13068

Hanley J, Dresser S, Simon W, et al. AAPM Task Group 198 Report: An implementation guide for TG 142 quality assurance of medical accelerators. Med Phys. 2021;48(10):e830-e885. https://doi.org/10.1002/mp.14992

Almond PR, Biggs PJ, Coursey BM, et al. AAPM’s TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams. Med Phys. 1999;26(9):1847-1870. https://doi.org/10.1118/1.598691

IAEA TRS 483. Dosimetry of Small Static Fields Used in External Beam Radiotherapy: An IAEA-AAPM International Code of Practice for Reference and Relative Dose Determination. In: Technical Report Series No. 483. International Atomic Energy Agency. Vienna, Austria; 2017.

Andreo P, Burns DT, Hohlfeld K, et al. IAEA TRS-398 Absorbed Dose Determination in External Beam Radiotherapy: An International Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water.; 2000.

International atomic energy agency. Quality Assurance in Radiotherapy, IAEA-TECDOC-989. IAEA, Vienna; 1998.

Patel I, Weston J, Palmer A. Physics Aspects of Quality Control in Radiotherapy (IPEM Report 81, 2nd Edition).; 2018.

Van der Wal E, Wiersma J, Ausma AH, et al. NCS Report 22: Code of Practice for the Quality Assurance and Control for Intensity Modulated Radiotherapy.; 2013.

Romero RR, Rincón CM, Moral Sánchez S, Rubio PS, Sevillano Martínez D. Procedimientos recomendados para el control de calidad de IMRT en tomoterapia. Rev Fis Med. 2018;19(2):73-102.

Netherton T, Li Y, Gao S, et al. Experience in commissioning the halcyon linac. Med Phys. 2019;46(10):4304-4313. https://doi.org/10.1002/mp.13723

Tijssen RHN, Philippens MEP, Paulson ES, et al. MRI commissioning of 1.5T MR-linac systems – a multi-institutional study. Radiother Oncol. 2019;132:114-120. https://doi.org/10.1016/j.radonc.2018.12.011

Jackson E, Bronskill M, Drost D, et al. AAPM n°100 - Acceptance Testing and Quality Assurance Procedures for Magnetic Resonance Imaging Facilities.; 2010.

Price R, Allison J, Clarke G, et al. Magnetic Resonance Imaging Quality Control Manual 2015. Am Coll Radiol. Published online 2015:120.

Steinmann A, O’Brien D, Stafford R, et al. Investigation of TLD and EBT3 performance under the presence of 1.5T, 0.35T, and 0T magnetic field strengths in MR/CT visible materials. Med Phys. 2019;46(7):3217-3226. https://doi.org/10.1002/mp.13527

Miften M, Olch A, Mihailidis D, et al. Tolerance limits and methodologies for IMRT measurement-based verification QA: Recommendations of AAPM Task Group No. 218. Med Phys. 2018;45(4):e53-e83. https://doi.org/10.1002/mp.12810

Chavhan GB, Babyn PS, Jankharia BG, Cheng HLM, Shroff MM. Steady-state MR imaging sequences: Physics, classification, and clinical applications. Radiographics. 2008;28(4):1147-1160. https://doi.org/10.1148/rg.284075031

NEMA. Determination of Signal-to-Noise Ratio (SNR) in Diagnostic Magnetic Resonance Imaging. NEMA Stand Publ MS 1-2008. Published online 2008.

NEMA. Determination of Image Uniformity in Diagnostic Magnetic Resonance Images. NEMA Stand Publ MS-3-2008. Published online 2008.

NEMA. Determination of Slice Thickness in Diagnostic Magnetic Resonance Imaging. NEMA Stand Publ MS-5-2008. Published online 2008.

De Roover R, Crijns W, Poels K, et al. Validation and IMRT/VMAT delivery quality of a preconfigured fast-rotating O-ring linac system. Med Phys. 2019;46(1):328-339. https://doi.org/10.1002/mp.13282

Bedford JL, Thomas MDR, Smyth G. Beam modeling and VMAT performance with the Agility 160-leaf multileaf collimator. J Appl Clin Med Phys. 2013;14(2):172-185. https://doi.org/10.1120/jacmp.v14i2.4136

Barten DLJ, Hoffmans D, Palacios MA, Heukelom S, Van Battum LJ. Suitability of EBT3 GafChromic film for quality assurance in MR-guided radiotherapy at 0.35 T with and without real-time MR imaging. Phys Med Biol. 2018;63(16). https://doi.org/10.1088/1361-6560/aad58d

Lee HJ, Kadbi M, Bosco G, Ibbott GS. Real-time volumetric relative dosimetry for magnetic resonance - Image-guided radiation therapy (MR-IGRT). Phys Med Biol. 2018;63(4). https://doi.org/10.1088/1361-6560/aaac22

Van Asselen B, Woodings SJ, Hackett SL, et al. A formalism for reference dosimetry in photon beams in the presence of a magnetic field. Phys Med Biol. 2018;63(12). https://doi.org/10.1088/1361-6560/aac70e

O’Brien DJ, Roberts DA, Ibbott GS, Sawakuchi GO. Reference dosimetry in magnetic fields: formalism and ionization chamber correction factors. Med Phys. 2016;43(8):4915-4927. https://doi.org/10.1118/1.4959785

Andreo P, Burns DT, Hohlfeld K, et al. IAEA TRS-398 Absorbed dose determination in external beam radiotherapy: An International code of practice for dosimetry based on standards of absorbed dose to water. Int At Energy Agency. Published online 2000.

Kalach NI, Rogers DWO. Which accelerator photon beams are “clinic-like” for reference dosimetry purposes? Med Phys. 2003;30(7):1546-1555. https://doi.org/10.1118/1.1573205

O’Brien DJ, Dolan J, Pencea S, Schupp N, Sawakuchi GO. Relative dosimetry with an MR-linac: Response of ion chambers, diamond, and diode detectors for off-axis, depth dose, and output factor measurements: Response. Med Phys. 2018;45(2):884-897. https://doi.org/10.1002/mp.12699

Cervantes Y, Duchaine J, Billas I, Duane S, Bouchard H. Monte Carlo calculation of detector perturbation and quality correction factors in a 1.5 T magnetic resonance guided radiation therapy small photon beams. Phys Med Biol. 2021;66(22). https://doi.org/10.1088/1361-6560/ac3344

Smilowitz JB, Das IJ, Feygelman V, et al. AAPM Medical Physics Practice Guideline 5.a.: Commissioning and QA of Treatment Planning Dose Calculations - Megavoltage Photon and Electron Beams. J Appl Clin Med Phys. 2015;16(5):14-34. https://doi.org/10.1120/jacmp.v16i5.5768

Aalbers AHL, Hoornaert MT, Minken A, Palmans H. NCS-18: Code of Practice for the Absorbed Dose Determination in High Energy Photon and Electron Beams.; 2012.

AAPM I. Dosimetry of small fields used in external beam radiotherapy. Int At Energy Agency Tech Reports Ser. 2017;483(5002):1138-1138.

Ezzell GA, Burmeister JW, Dogan N, et al. IMRT commissioning: Multiple institution planning and dosimetry comparisons, a report from AAPM Task Group 119. Med Phys. 2009;36(11):5359-5373. https://doi.org/10.1118/1.3238104

Hissoiny S, Ozell B, Bouchard H, Despŕs P. GPUMCD: A new GPU-oriented Monte Carlo dose calculation platform. Med Phys. 2011;38(2):754-764. https://doi.org/10.1118/1.3539725

De Pooter J, Billas I, De Prez L, et al. Reference dosimetry in MRI-linacs: evaluation of available protocols and data to establish a Code of Practice. Phys Med Biol. 2021;66(5). https://doi.org/10.1088/1361-6560/ab9efe

Liu C, Li M, Xiao H, et al. Advances in MRI-guided precision radiotherapy. Precis Radiat Oncol. 2022;6(1):75-84. https://doi.org/10.1002/pro6.1143

Tsuneda M, Abe K, Fujita Y, Ikeda Y, Furuyama Y, Uno T. Elekta Unity MR-linac commissioning: mechanical and dosimetry tests. J Radiat Res. 2023;64(1):73-84. https://doi.org/10.1093/jrr/rrac072

Geurts MW, Jacqmin DJ, Jones LE, et al. AAPM Medical Physics Practice Guideline 5.b: Commissioning and QA of treatment planning dose calculations—Megavoltage photon and electron beams. J Appl Clin Med Phys. 2022;23(9). https://doi.org/10.1002/acm2.13641

Published

2024-05-05

How to Cite

Ferrer Gracia, C., Huertas Martínez, C., García Riñón, D., Martínez Sánchez, M., Yang, G., Barroso Miranda, M., & Sáez Beltrán, M. (2024). Commissioning of an MR‐linac Elekta Unity. Revista De Física Médica, 25(1), 21–39. https://doi.org/10.37004/sefm/2024.25.1.002

Issue

Section

Scientific articles
Bookmark and Share