Comparison of absorbed dose to water and absorbed dose to medium in prostate and head and neck treatments. Analysis with different grid sizes and CT calibration curves

Authors

  • David García Riñón Servicio de Radiofísica y Radioprotección, Hospital Universitario la Paz. https://orcid.org/0000-0002-6504-4894
  • Carlos Ferrer Gracia Servicio de Radiofísica y Radioprotección, Hospital Universitario la Paz.
  • Concepción Huertas Martínez Servicio de Radiofísica y Radioprotección, Hospital Universitario la Paz.
  • Raúl Sánchez López Servicio de Radiofísica y Radioprotección, Hospital Universitario la Paz.
  • Moisés Sáez Beltrán Servicio de Radiofísica y Radioprotección, Hospital Universitario la Paz.

DOI:

https://doi.org/10.37004/sefm/2022.23.1.001

Keywords:

Monte Carlo, TPS Monaco, Interface, Absorber dose to medium, Absorber dose to water

Abstract

Differences between the dose distributions calculated with Dw,m y Dm,m on the Monaco planner for treatments of prostate and neck and head are analyzed. A division of organs in the form of layers of different thicknesses is performed to evaluate the influence of the calculation grid size (3mm and 1mm). Study of how affect the curve of calibration CT to calculated doses is made. The results show a variation, (Dw,m - Dm,m)/Dw,m, mean doses of 0.1%-0.3% on rectum and bladder, around 1% on spinal cord and oral cavity, 3% on femoral heads and 7% on jawbone. The coverage of PTV is superior in Dw,m in a 0.04%, 1.22% for prostate and 0.92%, 5.8% in head and neck (V95%, V100% respectively). Differences in head and neck regarding coverage of PTV, according his grade of overlap with bone, are important enough for the choice of absorption medium to affect tumour control. Dose variations between regions of different densities are superior with 1mm size grid, showing a higher sensibility to the interface. The variation with the CT calibration curve is only appreciable (0.38%) in organs with a density very different from that of water.

References

Kry SF, Lye J, Clark CH, Andratschke N, Dimitriadis A, Followill D, et al. Report dose-to-medium in clinical trials where available; a consensus from the Global Harmonisation Group to maximize consistency. Radiother Oncol. 2021;159:106–11. DOI:10.1016/j.radonc.2021.03.006

Menzel H-G. ICRU Report No 91.Treatment Planning Algorithms. J Int Comm Radiat Units Meas.2014; 14(2):65-75. DOI:10.1093/jicru/ndx014

Papanikolaou N, Battista JJ, Boyer AL, et al. AAPM Radiation Therapy Task Group nº 65. Tissue inhomogeneity corrections for megavoltage photon beams. Report nº 85. Madison (WI): Medical Physics Publishing; 2004. ISBN 1-888340-47-9

Cygler JE, Daskalov GM, Chan GH, Ding GX. Evaluation of the first commercial Monte Carlo dose calculation engine for electron beam treatment planning. Med Phys. 2003;31(1):142–53. DOI:10.1118/1.1633105

Mackie TR, el-Khatib E, Battista J, Scrimger J, Van Dyk J, Cunningham JR. Lung dose corrections for 6MV and 15MV x rays. Med Phys. 1985;12(3):327–32. DOI:10.1118/1.595691

Fogliata A, Cozzi L. Dose calculation algorithm accuracy for small fields in non-homogeneous media: the lung SBRT case. Phys Med.2017; 44:157-162. DOI:10.1016/j.ejmp.2016.11.104

Pokhrel D, McClinton C, Sood S, Badkul R, Saleh H, Jiang H, et al. Monte Carlo evaluation of tissue heterogeneities corrections in the treatment of head and neck cancer patients using stereotactic radiotherapy. J Appl Clin Med Phys. 2016;17(2):258–70. DOI:10.1120/jacmp.v17i2.6055

Huq MS, Andreo P, Song H. Comparison of the IAEA TRS-398 and AAPM TG-51 absorbed dose to water protocols in the dosimetry of high-energy photon and electron beams. Phys Med Biol. 2001;46(11):2985–3006. DOI:10.1088/0031-9155/46/11/315

Andreo P, et al. Technical report series No. 430: commissioning and quality assurance of computerised planning system for radiation treatment of cancer. IAEA, Vienna.2004. ISBN 92–0–105304–5

Chetty IJ, Curran B, Cygler JE, DeMarco JJ, Ezzell G, Faddegon BA, et al. Report of the AAPM Task Group No. 105: Issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning: AAPM Task Group Report No. 105: Monte Carlo-based treatment planning. Med Phys. 2007;34(12):4818–53. DOI:10.1118/1.2795842

Ma CM, Pawlicki T, Jiang SB, Li JS, Deng J, Mok E, et al. Monte Carlo verification of IMRT dose distributions from a commercial treatment planning optimization system. Phys Med Biol. 2000;45(9):2483–95. DOI:10.1088/0031-9155/45/9/303

Liu HH, Keall P. Dm rather than Dw should be used in Monte Carlo treatment planning. Against the proposition. Med Phys 2002; 29(5):922-924. DOI:10.1118/1.1473137

Siebers JV, Keall PJ, Nahum AE, Mohan R. Converting absorbed dose to medium to absorbed dose to water for Monte Carlo based photon beam dose calculations. Phys Med Biol.2000;45(4):983–95. DOI:10.1088/0031-9155/45/4/313

Dutreix A. When and how can we improve precision in radiotherapy?. Radiother. Oncol.1984; 2(4):275–92. DOI:10.1016/S0167-8140(84)80070-5

Stewart JG, Jackson AW. The steepness of the dose response curve both for tumor cure and normal tissue injury. Laryngoscope. 1975; 85(7):1107–1111. DOI:10.1288/00005537-197507000-00001

Goitein M, Busse J. Immobilization error: Some theoretical considerations. Radiology.1975; 117(2):407–412. DOI:10.1148/117.2.407

Ma CM, Li J. Dose Specification for Radiation Therapy: dose to Water or dose to Medium? Phys Med Biol.2011; 56(10):3073-3090. DOI:10.1088/0031-9155/56/10/012

Kry SF, Feygelman V, Balter P, Knöös T, Charlie Ma C-M, Snyder M, et al. AAPM Task Group 329: Reference dose specification for dose calculations: Dose-to-water or dose-to-muscle? Med Phys. 2020;47(3):e52–64. DOI:10.1002/mp.13995

Kan MWK, Leung LHT, So RWK, Yu PKN. Experimental verification of the Acuros XB and AAA dose calculation adjacent to heterogeneous media for IMRT and RapidArc of nasopharygeal carcinoma: Verification of AXB adjacent to heterogeneous media. Med Phys. 2013;40(3):031714. DOI:10.1118/1.4792308

Cabanas ML, Yan C, Lalonde RJ, Heron DE, Huq MS. Which dose specification should be used for NRG radiation therapy trials: Dose-to-medium or dose-to-water? Pract Radiat Oncol. 2020;10(2):e103–10. Disponible en: DOI:10.1016/j.prro.2019.08.008

Ma CM, Mok E, Kapur A, Pawlicki T, Findley D, Brain S, et al. Clinical implementation of a Monte Carlo treatment planning system. Med Phys. 1999;26(10):2133–43. DOI:10.1118/1.598729

Fippel M. Fast Monte Carlo dose calculation for photon beams based on the VMC electron algorithm. Med Phys. 1999; 26(8):1466-1475. DOI:10.1118/1.598676

Fippel M. Efficient particle transport simulation through beam modulating devices for Monte Carlo treatment planning. Med Phys.2004; 31(5):1235-1242. DOI:10.1118/1.1710734

Fippel M, Haryanto F, Dohm O, Nüsslin F, Kriesen S. A virtual photon energy fluence model for Monte Carlo dose calculation. Med Phys. 2003;30(3):301–11. DOI:10.1118/1.1543152

Fippel M, Kawrakow I, Friedrich K. Electron beam dose calculations with the VMC algorithm and the verification data of the NCI working group. Phys Med Biol. 1997;42(3):501–20. DOI:10.1088/0031-9155/42/3/005

Fippel M, Laub W, Huber B, Nüsslin F. Experimental investigation of a fast Monte Carlo photon beam dose calculation algorithm. Phys Med Biol. 1999;44(12):3039–54. DOI:10.1088/0031-9155/44/12/313

White DR, Griffith RV, Wilson IJ. ICRU Report No 46.Photon, Electron, Proton and Neutron Interaction Data for Body Tissues. J Int Comm Radiat Units Meas.1992; 24(1). DOI:10.1093/jicru/os24.1.Report46

Fano U. Note on the Bragg-Gray cavity principle for measuring energy dissipation. Radiat Res. 1954; 1(3):237–240. DOI:10.2307/3570368

Reynaert N, Crop F, Sterpin E, Kawrakow I, Palmans H. On the conversion of dose to bone to dose to water in radiotherapy treatment planning systems. Phys Imaging Radiat Oncol. 2018;5:26–30. DOI:10.1016/j.phro.2018.01.004

Sikora M, Dohm O, Alber M. A virtual photon source model of an Elekta linear accelerator with integrated mini MLC for Monte Carlo based IMRT dose calculation. Phys Med Biol. 2007;52(15):4449–63. DOI: 10.1088/0031-9155/52/15/006

Sikora M, Alber M. A virtual source model of electron contamination of a therapeutic photon beam.Phys Med Biol.2009; 54(24):7329–7344. DOI:10.1088/0031-9155/54/24/006

Gopal SK, Dash PC. Dose-to-medium vs. dose-to-water: Dosimetric evaluation of head and neck VMAT cases using Monaco treatment planning system. Int J Cancer Ther Oncol. 2016; 4(4):4416. DOI:10.14319/ijcto.44.16

Dogan N, Siebers JV, Keall PJ. Clinical comparison of head and neck and prostate IMRT plans using absorbed dose to medium and absorbed dose to water. Phys Med Biol.2006;51(19):4967–80. DOI:10.1088/0031-9155/51/19/015

Walters BRB, Kramer R, Kawrakow I. Dose to medium versus dose to water as an estimator of dose to sensitive skeletal tissue. Phys Med Biol. 2010;55(16):4535–46. DOI:10.1088/0031-9155/55/16/S08

Matsuura T, Tokutomi K, Sasaki M, Katafuchi M, Mizumachi E, Sato H. Distinct characteristics of mandibular bone collagen relative to long bone collagen: relevance to clinical dentistry. Biomed Res Int. 2014;2014:769414. DOI:10.1155/2014/769414

Radojcic DS, Casar B, Rajlic D, Kolacio MS, Mendez I, Obajdin N, et al. Experimental validation of Monte Carlo based treatment planning system in bone density equivalent media. Radiol Oncol. 2020;54(4):495–504. DOI: 10.2478/raon-2020-0051

Downloads

Published

2022-05-15

Issue

Section

Scientific articles

How to Cite

Comparison of absorbed dose to water and absorbed dose to medium in prostate and head and neck treatments. Analysis with different grid sizes and CT calibration curves. (2022). Revista De Física Médica, 23(1), 11-26. https://doi.org/10.37004/sefm/2022.23.1.001

Similar Articles

11-20 of 116

You may also start an advanced similarity search for this article.